The Hyperfine Stuctrure of Antiprotonic Helium and the Antiproton Magnetic Moment

T. Pask ${ }^{1}$, B. Juhasz ${ }^{1}$, E. Widmann ${ }^{1}$
${ }^{1}$ Stefan Meyer Institute for Subatomic Physics, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Wien, Austria

The ASACUSA collaboration is performing laser and microwave spectroscopy of antiprotonic helium ($\overline{\mathrm{p}} \mathrm{He}^{+}$), a metastable three-body system consisting of a helium nucleus, an antiproton and an electron, at the Antiproton Decelerator (AD) of CERN. $\overline{\mathrm{p}} \mathrm{He}^{+}$exhibits a hyperfine splitting (HFS) which is unique due to the large angular momentum of the metastable states ($L_{\bar{p}} \approx 35$): the HFS consists of a dominant splitting caused by the interaction of $L_{\bar{p}}$ with the electron spin S_{e} and a smaller splitting due to the interaction of the antiproton magnetic moment $\mu_{\bar{p}}$ with the other moments. The hyperfine splitting has been measured for the first time in 2001 with a precision of 3×10^{-5} [1]. The two observed transitions are in agreement with QED calculations at a level of 6×10^{-5}, which corresponds to the theoretical accuracy. The agreement gives a limit on the antiproton orbital g-factor of $\left|g_{l}^{\bar{p}}-1\right|<6 \times 10^{-5}$ [2]. The difference of the two transition frequencies is directly related to the value of the spin magnetic moment $\mu_{\bar{p}}$, which so far is known to only 0.3%. ASACUSA has started a new measurement with the goal of increasing the experimental precision by an order of magnitude, which would lead to a determination of $\mu_{\bar{p}}$ to 0.1%.

References

[1] E. Widmann et al., Phys. Rev. Lett. 89, 243402 (2002).
[2] D. Bakalov and E. Widmann, Phys. Rev. A 76, 012512 (2007).

