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What do we think we know and what can be verified using the new
capability with slow antiproton beams?

Recent review (mainly theoretical): J.S. Cohen, Rep. Prog. Phys. 67, 1769-1819 (2004).
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"Adiabatic ionization" occursat R <R.~0.64 a,
[Wightman, 1950; Fermi&Teller, 1947]
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Theoretical methods for X capture by the H atom

1. Adiabatic ionization (Al)
[Wightman(1950)]
2. Born / Coulomb-Born (BA, DWA)
[de Borde(1954) ... Korenman & Rogovaya(1980)]
3. Diabatic states (DS)
[Cohen, Martin & Wadt(1981)]
4. Classical-trajectory Monte Carlo (C'TMC)
[Cohen(1983)]
5. Time-dependent Hartree-Fock (TDHE) with 1 wave packet
[Garcia, Kwong & Cohen(1987)]
6. Classical-quantal coupling (CQC)
[Kwong, Garcia & Cohen(1989)]
7. Close coupling (CC)
[Boukour(1996)]
8. Fermion molecular dynamics (FMD)
[Cohen(1997, 1998)]
9. Perturbed stationary states (PSS)
[Ohtsuki(1999)]
10. Time-dependent semiclassical(trajectory) Schrodinger eq. (SC)
[Sakimoto(2001)]

11. Time-dependent wavepacket Schrodinger equation (QM)
[Sakimoto(2002)]
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Isotope effect on antiproton capture by atoms
(CTMC calculation)
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Projectile mass effect on exotic atom formation
(CTMC calculation)
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The Quasiclassical Method

The Fermion Molecular Dynamics (FMD) method is an extension
of the Classical-Trajectory Monte Carlo (CTMC) method to multi-
electron atoms and molecules, obtained by introducing pseudo-
potentials to represent quantum-mechanical effects.

Advantages for capture of heavy (m > m,) negative particles:

e The classical (Hamilton) equations of motion are easier to solve
than the Schrodinger equation.

e [ull dynamics is done for all particles. Thus correlation is fully
treated and all rearrangement, channels (including breakup) are
treated on equal footing.

e The electronic continuum occurs naturally.

e The large number of intermediate and final states presents no
difficulty. Capture is into high n, [ orbitals, so the correspon-
dence principle applies.

Possible weaknesses:

e Correlation may be too strong.

e May not be adequate when the molecular vibrational rotational

spacings are large (as in Hy).

e Not valid for light reactants like electrons and positrons.
Where corroboration is available, the FMD method seems to be
rather accurate, but, at the very least. it is useful to obtain an
indication of important features, so requirements for experiments
and future quantum-mechanical methods can be gauged.
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Metastable poe

0.08 I T T | ' ' ! ' !
097 F observed _
006 [ att~3us calculated N
| att~03ps
004 + collisional Stark mixing™
ek —> Auger decay?
002 - Auger

decay
001

| | | |

0 20 30 80 90 100

States can Auger decay if

6P 6P >8]

bind

If I=n-1, then An =1 for dipole transitions, and this

condition is satisfied only for n<30.

But big atoms (large n) may be collisionally Stark

mixed so the selection rule doesn't apply.
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Capture of antiprotons by some (radioactive) atoms and their ions
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Diabatic calculations
ignoring the internal structure of the molecule
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Final Arrangements in p+Hy Reaction

In capture of p by Hs, intermediate states such as pppe™ or ppe™
are possible, but are predissociative and/or autoionizing. For this
reason we have adopted the approach of following the trajectories
long enough that the isolated pp atom can be characterized. The
reactions distinguished are then

pp+H+e ~ 98% (a)
p+Hy — pp+H™ S 2% (mainly at low F) (b)
pp+p+e +e S 1% (mainly at high F) (¢)
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Another comparison with nonexotic physics

"Lambert-Salter plot"
Collisional vibrational deactivation
of polyatomic molecules at 300K

with H atoms
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Capture of 7= in Ho+D» vs HD

P, = Probability of ini®ial captire by p (£y==1—F,)
W, = Probability of final capture by p

) = (P, — W,)/F, = Probability of transfer 7 p+d — p+ 7 d

Fixperimental: VVIS D) — 0,405 £ 0.010 [*World Fit”¢le=4)]
WHP) = 0.338 + 0.008"

Original experimental analyses assumed P, = F; = 0.5 in both
Hy+Ds and HD. With this assumption:
Q=(19 2)% n Ho—+Ds
Q) =(32+2)% in HD

} Ditference was a mystery!

“Weber et al. (1990)

"Aniol et al. (1983)

“Kravtsov et al. (1988)
IPetrukhin & Prokoshkin (1969)



Negative pion capture by isotopic hydrogen molecules
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Effect of dissociation
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Capture of 7= in Ho+Dy vs HD

P, = Probability of initial capture by p (Fy=1—F,)
W, = Probability o finnal capture by p

Q) = (P, —W,)/ P, = Probability of transter 7" p+d — p+ 7 d

Experimental: W (TP — 0405 + 0.010
(

P
WIHPY = 0.338 £ 0.008
Original experimental analyses assumed P°,/F7; = 1.0 in both

Hs+Ds and HD. With this assumption:
Q:(19:|:2)%111H2—|—DQ} U
O = (32 + 2)% in HD Difference was a mystery!
Our FMD calculations give:
Pp/Pd = 1.204 in Ho+D»
P,/ F;=0.875 in HD
With these values of P,/ Py, the same experimental data implies:
Q= (26 £ 2)% in Ho+Dy

, Lo Congistency is now quite satistactory.
Q) = (28 = 2)% in HD } v 1 v



Nonadiabaticity & ionization in p capture by H;’
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Capture of pby H, H, & H,
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Conclusions

For capture by atoms:

1. The adiabatic-ionization model is valid only for the H atom. No
one-electron model can be adequate for Z > 2.

2. The isotope effect is quite small for atoms.

3. The initial angular momentum distribution increases more
rapidly than (2[ + 1).

For capture by atomic ions:

1. Except for He™. capture is similar to the parent atom.

For capture by Hs. Ds. or HD:

1. Capture cross sections are larger and extend to higher collision
energies for the molecular targets than for the corresponding
atomic target. This effect is greater for p than for p= (or 77).

2. The isotope effect is large for H(or D)-containing molecules.

e [nitial capture favors the lighter nucleus.

e Subsequent dissociation favors the heavier nucleus.

3. The n and [ distributions are narrower and shifted to lower
values relative to the distribution for the corresponding atom.

For capture by HJ:

1. Capture by Hy is almost entirely due to target dissociation, not
lonization.



Key features for verification in p capture experiments

For capture by atoms and atomic ions:
1. H and He atoms: Rather sharp cutoff at £/ >1.P.
2. Higher-Z atoms: Multiple ionization contributes to capture.

3. Atomic singly charged ions: Similar to parent atom. except for

He.

For capture by hydrogen molecules and ions:
1. Hy molecule: Capture at much higher energies than for H atom.

2. H3 molecular ion: Capture occurs mostly without ionization.

Speculations: (based on interpretation of existing calculations)

1. Capture by molecules not containing H or D, e.g. O,, may be
similar to that of the constituent atoms.

2. Hydrides may be qualitatively like Hs. (H>O might be interest-
ing.)
Of great basic interest:

e Comparison of cross sections and quantum-number distributions
for capture of p by H, Hy, and H".
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