A new path toward gravity experiments with \overline{H}

hep-ex-0411077, to appear in Nucl. Inst. Meth. A

<u>Outline:</u>

- Goal: measure g for \overline{H}
- Reactions to produce the ion \overline{H} + using Ps
- Getting the required Ps density
- Challenges
- Overall Scheme

Measure g for H as proposed by Walz et Hänsch

J.Walz & T. Hänsch, General Relativity and Gravitation, 36 (2004) 561.

scintillator

scintillator

ultracold \overline{H}^+ ions in a Penning trap

gravity

photodetachment

 $\rightarrow \Delta g/g = 0.001$

 \rightarrow

= 0.006

= 0.02

- Capture the ion $H^+ \rightarrow$ cooling μK
- De-ionisation via laser
- Vertical time of flight
- Relative precision on g: $\rightarrow 5 \ 10^5 \text{ H}$ in the ion trap $\rightarrow 10^4$ $\rightarrow 10^3$ Syst. error dominated by \overline{H}^+ temperature

P. Pérez & A. Rosowsky

March 14, 2005

Production: atoms & ions

CERN

proposal

- Radiative Recombination (RR) $ne \leq 10^{8} cm^{-3}$ $p + e^{-} \rightarrow H$ $\overline{p} + e^{+} \rightarrow \overline{H}$
- Laser Induced Radiative Recombination (LIRR) $p + e^{-} + h\nu \rightarrow H + 2h\nu$ $p + e^{+} + h\nu \rightarrow H + 2h\nu$
- 3 Body reactions (3BDY) $p + e^{-} + e^{\pm} \rightarrow H^{*} + e^{\pm} \stackrel{ne}{=} \frac{\geq 10^{9} \text{ cm}^{-3}}{\overline{p}} + e^{+} + e^{\pm} \rightarrow \overline{H}^{*} + e^{\pm}$

$$e^+ + e^- + e^{\pm} \rightarrow P_S^* + e^{\pm} \& e^+ + metal \rightarrow P_S$$

• Charge exchange with Positronium (CXPS) $p + P_S \rightarrow H + e^+$ $H + P_S \rightarrow H^- + e^+$ Matter Matter March 1 Ion \overline{H}^+ & 1D \Rightarrow P_S target

P. Pérez & A. Rosowsky

Comparison with other methods

- <u>ATHENA style</u>
 - \overline{H} production efficiency ~ 17% per \overline{p} of 10-20 KeV
 - 90% produced in very excited states (3 body) and in 4π
 - → not usable for gravity experiments
- ATRAP style
 - Cesium, $Ps^* \rightarrow H^*$ in 4π , laser control of excitation level
- Using Ps
 - T = 25 meV & transitory regime
 - & ~ 0.3% but,
 - Reaction on $P_S \rightarrow H$ non excited & in small solid angle

Scheme of experiment

March 14, 2005

Positronium target in 3 steps

- 1. <u>Production</u> Ne⁺ \geq 10¹¹, T ~ 25 meV
 - \rightarrow new source of e⁺
 - → Buffer-gaz + high field trap (Surko-Greaves) loaded in 100 s
- 2. <u>Accumulation of e+ near Ps converter</u>
 - → Storage of plasma (possibility for neutralization)

E (octupole) + B (⇒⇐) :" MCEO trap" (Mohri-Yamazaki et al)

- 3. <u>Charge separation & focalisation</u> $e^+ + metal \rightarrow P_s$
 - → Conversion of e⁺ into flux of $P_s(1S)$ from metal converter

New source of slow e⁺

See talk by A. Rosowsky

 $\sim 10^{12} \text{ e}^{+/s} < 1 \text{ MeV}$

~10⁹ e⁺/s after traps Fill high field trap in 100 s Unload trap in < 1s

Adapt MCEO trap to e⁺, e⁻

<u>Challenge</u>: accumulate 10¹¹ e⁺ and then dump on W in 10 to 50 ns

E & B fields

A. Mohri et al., Jpn. J. Appl. Phys. 37 (1998) L1553.

Simulation MCEO

simulations are only inertial \rightarrow determine dimensions

& minimum field strength

Plasma challenges

 \rightarrow study a range of B field strengths: 200 Gauss to ~ 0.2 T

March 14, 2005

Ps converter in central electrode

Simulation of e⁺ dump

March 14, 2005

Plasma erosion

• Neutralisation with

e within ~ 0.1 s

• Erosion near Ps converter

Antiproton beam

- <u>E ~ 10-20 KeV</u>:
 - ▶ Project ELENA at CERN/AD → 100 KeV + foils in 2007-2010 ?
 - ▶ FLAIR at GSI-Darmstadt \rightarrow 5 KeV in 2012 (approved)
 - > JPARC in construction in Japan \rightarrow 1st beam 2008

March 14, 2005

Summary

Proposal:

- 10-20 keV \overline{p} combine with P_s(1S) "at rest"
- \overline{H} (1S) & \overline{H} + produced in small solid angle
- e+ plasma stored in MCEO < 1s, T > room temp.
- Challenges
- P_s produced may provide interesting physics itself

Simulation MCEO

Simulation of e⁺ dump

