Production of ultra-slow antiproton beams

Hiroyuki A. Torii Institute of Physics, University of Tokyo

MUSASHI-Trap group

N. Kuroda, M. Shibata, Y. Nagata, D. Barna, M. Hori, J. Eades, A.Mohri, K. Komaki and Y. Yamazaki University of Tokyo, RIKEN, KFKI (Budapest), CERN ASACUSA Collaboration

Production of ultra-slow antiproton beams

- **9** Why low-energy antiprotons
- **9** Cooling scheme
- **9** Trapping
- **9** Extraction & beam transport
- **9** Near-future plans

Low-energy Antiproton — as a probe of atomic processes

ionization cross section for atomic $\overline{p} - D$ single ionization cross sect. for \overline{p} – He 1.0 2.5 CTMC FIM: Reading, Ford et al (97) TDSE Wells et al (96) MEHC: Krstic and Schultz (97) CTMC Wells et al (96) TDSE Krstic et al (96) CC2e: Lee, Tseng and Lin (99) 0.8 2.0 CDW-EIS: Fainstein (94) CDW-EIS Fainstein (94) CTMC: Schultz (89) CTMC Ermolaev (87) Cross Section [A²] OCAOCC Schiwietz (95) Cross Section [A²] FIM : TCAOCC Toshima (93) 0.6 1.5 PS194 (95) one cu F. - T. Effective 0.4 1.0 7 cuts **CDW-EIS** 0.5 0.2 Fermi - Teller limit MEHC 0 0 100 10 1000 10 100 1000 Energy [keV] Energy [KeV]

ionization : 1–1000 keV theoretical calculations widely vary

capture + ioniz. cross. sect. for \overline{p} + H / H₂

South a la ha

ASACUSA

Atomic Spectroscopy And Collisions Using Slow Antiprotons

MUSASHI

Monoenergetic UltraSlow Antiproton Source for High-precision Investigations

Asakusa, Tokyo

D.Z. Marian

Cooling scheme

5.3 MeV antiproton from AD RFQD (Radio-Frequency Quadrupole Decelerator) ~ 100 keV antiproton thin degrader foils < 10 keV antiproton MRT (Trap) electron cooling sub-eV antiproton beamline extraction of 10-1000 eV antiproton beam

MRT (Multi-Ring electrode Trap) installed in 2.5 T magnetic field

ca. 500 ns

10⁻⁹ Torr

foil detector (p beam profile monitor)

2 foils \times 90 μ m thickness 50 nm Ag evaporative-plated

 10^{-12} Torr

Antiproton Injection

p beam focused to 3 - 4 mm FWHM

Antiproton Injection : Čerenkov detectors

decelerated p

Degrader foils / Center of MRT / Extraction Electrode

Trapping and Accumulation of Antiprotons

cumulative count of \overline{p} annihilation v.s. elapsed time

1.2 Million p's trapped per AD shot of 20 Million

Stacking of several AD shots 4.8 Million for 5 shots

track detector

beamline

Problem in extraction

Most of antiprotons annihilated against an Extraction Electrode !

Keys for efficient extraction

- Bore alignment
- on-axis electron injection (10⁸ electrons)

electron gun

5

. . .

Keys for efficient extraction

- Bore alignment
- on-axis electron injection (10⁸ electrons)
- radial size of antiproton cloud
 - beam tuning: focusing p beam into the trap
 - decompression of electron plasma
 - electron ejection
 - radial compression by rorating E field

Gas-jet target

Gas-jet : talk by V.L. Varentsov

Summary

- We have decelerated 5-MeV p and cooled them to sub-eV energies.
- **9** Confinement of 1.2 Million **p**'s per AD shot.
- O Diagnosis and control of electron plasma and antiproton cloud.
- Slow extraction of antiprotons as a monoenergetic beam at 250 eV.
- Single-collision experiment to study capture and formation process of antiprotonic atoms.

Related talks

N. Kuroda: Control of plasmas for production of ultraslow antiproton beams

V. L. Varentsov: ASACUSA gas-jet target: present status and future development

Cheers! Félicitations !

Present members: N. Kuroda, M. Shibata, Y. Nagata, H.A. Torii, M. Hori, D. Barna, A. Mohri, K. Komaki, Y. Yamazaki Ex-members: K. Yoshiki Franzén, Zhigang Wang, T. Ichioka, H. Higaki, N. Oshima, T.M. Kojima Special thanks to: Y. Odashima, W. Pirkl, CERN cryolab, CERN PS & AD staff