Intense Slow Positron Source

Nucl. Inst. Meth. A 532 (2004) 523-532.

Intense Slow Positron Source

- Introduction
- Geometry, heat inside target, e⁺ production rate
- Collection
- e⁻ spread, e⁻ dump
- e⁻ beam, e⁺ e⁻ separation, rotating coils

e⁺ Production and Collection

- Beam energy/intensity : 10 MeV 2~10 mA
- Target geometry : thin foil at grazing incidence (3 degrees)
- Probability of first interaction (e⁺ & Xrays)
- Thermal effects : Xrays + e leak
- Large angle collection and selection < 1 MeV

Thin Target at Grazing Angle

Track Length inside Target

10⁴ 30 e⁻ track length inside targets 10 of 1mm equivalent thickness 900 10 <_> rms cm) cm) 10 30 0.11 0.11 **90**⁰ 0.53 0.48 1 0.5 2.5 -0.5 0 1 1.5 2 track length (cm)

Kinetic energy at target exit

18/03/2005

P. Pérez & A. Rosowsky

Target

e⁻ soldering test on

Tungsten 50 μm 40 kV / 20 mA on 20 mm²

not perforated at 15 mA

Melting limit: 4 kW / cm²

Working hypothesis: 2 kW / cm²

Study hypothesis: 1 kW / cm²

Test with high intensity beam from IBA foreseen \rightarrow T rise, evaporation...

18/03/2005

Electron welding tests

Electron welding test - Voltage = 40 kV - Area=0.2 cm² Electron welding test - Thickness = 50 microns - Area= 0.2 cm^2 40 KV 50 µm (Yuu) 30 30 20 (Km³) Xem¹⁰ IMAX Power 0 └ 20 10⁻² 10 ⁻¹ Thickness (mm) Voltage (KV)

Illuminated area = 0.2 cm^2

18/03/2005

Input e⁻ energy comparisons

•<u>*Rule of the game*</u>: Target sustains 1 KW continuous deposited power per cm²

• <u>Goal</u>: optimize rate of e^+ with $E_{e^+} < 1$ MeV

Input variables:

 $\mathbf{E} = \mathbf{e}^{-}$ energy, $\mathbf{I} = \mathbf{e}^{-}$ current,

 θ = e⁻ incidence angle on target, **D**' = target equivalent thickness

Here try 2 values for E (10 and 100 MeV) and θ (3 and 90 degrees)

Energy Deposit in 1cm² Target

Simulation with GEANT

Maximum input current

Simulation with GEANT

Production Rate (forward)

Production Rate (E_{e+} <1 MeV)

Optimal Production Rates (forward)

Optimal Production Rates (E_{e+} <1 MeV)

Production

Energy versus angle

Collection Setup

WALL SHIELD

18/03/2005

Setup 2003

Setup 2004

3D setup 2004

Positrons

18/03/2005

Positrons in plane H2

2004

18/03/2005

energy versus radius at x = 200 cm

18/03/2005

Positrons radius at x = 200 cm

18/03/2005

P. Pérez & A. Rosowsky

Transversal cuts: positrons

18/03/2005

P. Pérez & A. Rosowsky

28

e+ position in (y, z) planes

18/03/2005

P. Pérez & A. Rosowsky

29

Collection efficiency

Fraction of e⁺ at exit plane inside circle of radius 5 or 2 cm centered on axis

transverse radius of e+ source at target level (cm)

18/03/2005

Version 2004

l = 2.5 mA	X = 200 cm			X = 320 cm		
R _{coll} = 5 cm	5	e⁺ yield	e⁺ rate xE12	5	e+ yield	e⁺ rate xE12
all	24%	5.0E-4	7.8	23%	4.87E-4	7.6
E <1 MeV	33%	2.4E-4	3.7	32%	2.37E-4	3.7
E < 600 KeV	25%	1.0E-4	1.6	23%	0.95E-4	1.5
	X = 200 cm					
l = 2.5 mA	Х	= 200 c	m	X	= 320 c	m
I = 2.5 mA R _{coll} = 10 cm	X 10	= 200 c e⁺ yield	m e⁺ rate xE12	X 10	= 320 ci e⁺ yield	M e⁺ rate xE12
I = 2.5 mA R _{coll} = 10 cm all	X 10 31%	= 200 c e⁺ yield 6.3E-4	m e⁺ rate xE12 9.8	X 10 29%	= 320 cl e ⁺ yield 5.99E-4	m e⁺ rate xE12 9.3
I = 2.5 mA R _{coll} = 10 cm all E <1 MeV	X 10 31% 36%	= 200 c e⁺ yield 6.3E-4 2.6E-4	2 m e⁺ rate xE12 9.8 4.1	X 10 29% 35%	= 320 cl e ⁺ yield 5.99E-4 2.53E-4	m e⁺ rate xE12 9.3 3.9

Electrons (2003)

18/03/2005

Energy deposited into SC10 from 0 to 200 cm

Scattered electrons inside

P. Pérez & A. Rosowsky

18/03/2005

18/03/2005

18/03/2005

Energy deposited

energy in % of total deposited beam energy

dE/dx magnet	H1	HLM1	=	0.000	122330341
dE/dx magnet	H2	HLM2	=	0.028	6305789
dE/dx magnet	H4	HLM4	=	0.068	32362914
dE/dx dump		SCR2	! =	0.000	0255941792
dE/dx magnet	H3	HLM3	I =	1	0.0091400696
dE/dx magnet	H3	HLM3	=	2	0.00750565063
dE/dx magnet	H3	HLM3	=	3	0.00405035447
dE/dx magnet	H3	HLM3	=	4	0.00288876216
dE/dx magnet	H3	HLM3	=	5	0.00254936377
dE/dx magnet	H3	HLM3	=	6	0.00162501738
dE/dx magnet	H3	HLM3	I =	7	0.00172283954
dE/dx magnet	H3	HLM3	=	8	0.00202953094
dE/dx magnet	H3	HLM3	=	9	0.000685093924
dE/dx magnet	H3	HLM3	1 =	10	0.000578379841
dE/dx magnet	H3	HLM3	1 =	11	0.00041745021
dE/dx magnet	H3	HLM3	=	12	0.000419273681
dE/dx rod H3	RO	D3 I =	1	0.01	0669956
dE/dx rod H3	RO)3 =	4	0.00	951220281
dE/dx rod H3	RO	D3 I =	9	0.00	702352962
dE/dx rod H3	RO	D3 I =	12	0.00	500533357

dE/dx SCR4 = 0.
dE/dx SCR5 = 0.
dE/dx SCR6 = 0.
dE/dx SCR7 = 0.00640179683
dE/dx SCR8 = 2.370119E-05
dE/dx SCR9 = 7.97315661E-05
dE/dx SC10 = 0.356774747
dE/dx SC11 = 0.147463262
dE/dx SC12 = 5.45780676E-05
dE/dx SC4P = 0.00213429541
dE/dx ROD2 = 0.0340836123
dE/dx RDUP = 0.00375873246
dE/dx LIK3 = 0.0216296595
dE/dx RAIL = 0.0265459437
dE/dx deflector H2 = 0.00584139721
dE/dx deflector H3 = 0.00109494338
dE/dx deflector DFDU = 0.000519398251
dE/dx deflector SC11 = 0.00316047249

dE/dx deposited in moderator = 0.000436547067

total dE/dx inside target-selector cylinder = 0.996470451

e⁻

Two possible setups with same e⁺ output

 Beam and coils on same axis

Fluxes of electrons and photons

= 2.3 mA

R = 1 cmR = 2 cmR = 3 cmR = 4 cmat exit Setup 1 5 W 140 W 450 W 1.5 kW plane Setup 2 80 W 10 W 45 W 110 W

No target No dump (setup 2)

Selector field map

18/03/2005

electrons

positrons

Selector: electrons

Selector: positrons

18/03/2005

2 steps e+ isolation priority to e+ << 1 MeV !!!

A very first design of a 2D expander/uniformizer

Expander (2)

P. Pérez & A. Rosowsky

50

Expander (3)

P. Pérez & A. Rosowsky

Optimal Production Rates (E_{e+} <1 MeV)

What next

- Finalize injection scheme (F. Meot/Saclay)
- Finalize engineering of collection system (SACM/Saclay)
- Shielding scheme: depends on location
- Study moderation "a la DELFT " hot or cold before trap

Design differences (2)

Original EPOS design:

40 MeV, 0.25 mA, ~CW Linac Pt or W moderator, 3.5 mm Pt target Neutron activation

Collection efficiency before trap 20% Expected Rate before trap 1.6 10⁸ s⁻¹

At 10 MeV, 2.5 mA 1mm target = 0.8 10⁸ s⁻¹ Proposed design:

10 MeV, 2.5 mA, CW

Ne Moderator, thin W target

Collection efficiency before trap 20%

Expected rate before trap 1.1 10¹⁰ s⁻¹

E (MeV)	l(mA)	Mod.	Activ.	L	wall	Rate
40	0.25	Pt	yes	30m	3m	1.6 10 ⁸
10	2.5	W	no	3m	2m	0.8 10 ⁸
10	2.5	Ne	no	3m	2m	10 ¹⁰

Other designs

Thermal neutron capture: ${}^{113}Cd(n,){}^{114}Cd = 26000$ barn !! By nuclear research reactor FRM2 in Munich (Germany) can reach $10{}^{10}s{}^{-1}$

L IBA Rhodotro	n Models -	Basic	
Spe	cifications TT100	<u>TT200</u>	<u>TT300</u>
Energy (MeV)	3-10	3-10	3-10
Power range at 10 MeV (kW)1-35	1-80	1-150
Design value (kW)*	45	100	> 200
Full (cavity) diameter (m)	1.60 (1.05)	3.00 (2.00)	3.00 (2.00)
Full (cavity) height (m)	1.75 (0.75)	2.40 (1.80)	2.40 (1.80)
Weight (T)	2.5	11	11
MeV/pass	0.833	1.0	1.0
Number of passes	12	10	10
Stand-by kW used	<15	<15	<15
Full beam kW used	<210	<260	<370

Compact e+ factory

- Ne⁺ below 1 MeV > 10¹³ s⁻¹
 → Ne⁺ at 1 eV > 10¹⁰ s⁻¹
- Beam energy/intensity :

10 MeV ~2.5 mA

- Interdisciplinary lab:
 - HEP
 - Plasma
 - Condensed Matter
- SR radiation control and infrastructure

Engineering improvements

Version 2004

l = 2.5 mA	X = 200 cm			X = 320 cm		
R _{coll} = 5 cm	5	e⁺ yield	e⁺ rate xE12	5	e⁺ yield	e⁺ rate xE12
all	24%	5.0E-4	7.8	23%	4.87E-4	7.6
E <1 MeV	33%	2.4E-4	3.7	32%	2.37E-4	3.7
E < 600 KeV	25%	1.0E-4	1.6	23%	0.95E-4	1.5
	X = 200 cm					
l = 2.5 mA	X	= 200 c	m	X	= 320 ci	m
I = 2.5 mA R _{coll} = 10 cm	X 10	= 200 c e⁺ yield	rm e⁺ rate xE12	X 10	= 320 ci e⁺ yield	M e⁺ rate xE12
I = 2.5 mA R _{coll} = 10 cm all	X 10 31%	= 200 c e⁺ yield 6.3E-4	m e⁺ rate xE12 9.8	X 10 29%	= 320 ci e ⁺ yield 5.99E-4	m e⁺ rate xE12 9.3
I = 2.5 mA R _{coll} = 10 cm all E <1 MeV	X 10 31% 36%	= 200 c e⁺ yield 6.3E-4 2.6E-4	2m e⁺ rate xE12 9.8 4.1	X 10 29% 35%	= 320 ci e ⁺ yield 5.99E-4 2.53E-4	m e⁺ rate xE12 9.3 3.9

Positron energy spectrum

Same number of electrons on target

