ASACUSA supersonic gas-jet target: present status and future development

<u>V.L. Varentsov</u>^{2, 3}, N. Kuroda ², Y. Nagata ^{1, 2}, H. A. Torii ¹, M. Shibata², Y. Yamazaki^{1, 2}

¹Institute of Physics, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan ²Atomic Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan ³V.G. Khlopin Radium Institute, 2nd Murinskiy Ave. 28, 194021, St. Petersburg, Russia

Types of internal targets

Solid targets:
thin fibers
dust targets
pellet targets

Molecular beam targets: molecular effusion gas-jets cluster-jets carrier gas cooling technique

Microparticle beams – dust targets

particle size ~ (1-3) μm

Effective dust targets thickness ~ 10¹⁴ – 10¹⁶ atoms/cm²

Frozen hydrogen micro-droplets – pellet targets

율

Nozzle diameter 20 μm

micro-sphere internal target facility.

Pellets diameter ~ 40 μm

Droplets are produced by an acoustical excitation induced by a piezo-electric transducer of ~ 70 kHz frequency

Types of internal targets

Solid targets:
thin fibers
dust targets
pellet targets

Solid targets are locally very thick $(10^{17} - 10^{19} \text{ atoms/cm}^2)$ and they are unsuitable for collision experiments with ultra slow pbar-beams

Molecular beam targets:
molecular effusion
supersonic gas-jets
cluster-jets
carrier gas cooling technique

Supersonic gas-jet targets

The ESR internal target at GSI, Darmstadt

H. Reich, W. Bourgeois, B. Franzke, A. Kritzer, V. Varentsov, Nucl. Phys. A 626 (1997) 417

Trumpet-shaped nozzle with 0.1 mm throat diameter

 $\frac{\text{Target densities}}{\text{He (T= 300 K) - 5*10^{10} p/cm^3}}$ H₂ (T= 300 K) - 3*10¹⁰ p/cm³ H₂ (T= 80 K) - 1*10¹³ p/cm³ - clusters in the jet Victor Varentsov

Supersonic gas-jet targets

Indiana Cooler ring target at IUCF, Bloomington

J.E. Doskov, F. Sperisen, Nucl. Instr. and Meth., A362 (1995) 20

Geometry of glass nozzle

H₂ flow rate through the nozzle = 1*10²⁰ mol./s ~ 4 mbar l/s

Background pressure in the scattering chamber > 5*10⁻⁴ mbar

Supersonic gas-jet targets

Indiana Cooler ring target at IUCF, Bloomington

Cluster-jet targets

C. Ekström / Nucl. Instr. and Meth. in Phys. Res. A 362 (1995) 1-15

Fig. 2. Vertical cross section of the central part of the cluster-jet target at the CELSIUS ring, showing, in the upper part, the differentially pumped beam source with the cooled nozzle, skimmer and collimators, the wide-angle scattering chamber, and, in the lower part, the cryogenic target-beam dump.

Carrier gas cooling technique

- Only internal targets from gases (H₂, He, D₂, N₂, Ar, CO₂, CH₄, Kr, Xe) are now in operation at storage rings.
- Our novel method of gas dynamic cooling allows to considerably extend the range of elements are available for internal targets production
 - E.g. see: V.L. Varentsov et al., Nucl. Instr. and Meth., A317 (1992) 1

V.L. Varentsov et al., Nucl. Instr. and Meth., A352(1995) 542 V.L. Varentsov et al., AIP Conf. Proc., vol. 421,(1997) 381

Maybe, it will be reasonable to use this technique also for study pbar-nucleus cross sections at low pbar energies (up to 100KeV)

Gas-jet target setup connected to the MUSASHI beamline

Supersonic Jet measurement and simulation

He supersonic jet from a conical converging-diverging nozzle of NSCL stopping gas cell, Michigan State University, 2001

RIKEN, March 15, 2005

Victor Varentsov

Supersonic Jet measurement and simulation

He supersonic jet from a cylindrical nozzle of NSCL stopping gas cell, Michigan State University, 2001

Impact pressure profile

Supersonic Jet measurement and simulation

Supersonic jet from the nozzle of SHIPTRAP stopping gas cell, Munich University, 2000

Impact Pressure Profile [mbar]

Supersonic jet profiles measurements with Pitot tube

Supersonic jet profiles measurements with Pitot tube

Helium target density as a function of nozzle-skimmer distance

Main target design and operation parameters

Nozzle a	nd skimmer	geometry

Nozzle diameter0.1 mmSkimmer diameter0.6 mmCollimator2.2x4.4 mm

Nozzle-skimmer distance 4 mm Collimator-skimmer distance 35 mm

He gas flow and pumping conditions

Stagnation pressurePo = 1.41 barStagnation temperatureTo = 150 KAmbient pressurePa = $6*10^{-3}$ mbarGas flow rate6.6 mbar l/sEffective pumping speed1076 l/s

He gas-jet parameters at skimmer entrance

Velocity	1190 m/s
Temperature	13.1 K
Mach number	5.9
Density	5.7*10 ¹⁵ atoms/cm ³

Helium supersonic jet simulation

Pulsed jet modeHelium supersonic jet simulation

Pulsed jet mode

Helium supersonic jet simulation

Main target design and operation parameters

Pulsed jet mode

Nozzle and skimmer geometry

Nozzle diameter	0.1 mm
1 st skimmer diameter	0.6 mm
2 nd skimmer diameter	2.2 mm
Collimator	2.2x4.4 mm

Nozzle-skimmer distance11 mmSkimmer-skimmer distance25 mmCollimator-skimmer distance35 mm

He gas-jet parameters at skimmer entrance

Velocity	1733 m/s
Temperature	0.78 K
Mach number	35.8
Density	5.1*10 ¹⁵ atoms/cm ³

He gas flow and pumping conditions

Stagnation pressure	Po = 22.6 bar
Stagnation temperature	To = 300 K
Ambient pressure	Pa = 0.1 mbar
Pulse gas flow rate	78.5 mbar l/s
Effective pumping speed	785 l/s

Calculated target density 3.0*10¹³ atoms/cm³

Helium gas-jet velocity profile

71

Helium gas-jet temperature profile

168

Helium gas-jet temperature profile

178

Helium gas-jet temperature profile

Helium gas-jet temperature profile

ASACUSA supersonic gas-jet target: present status and future development

Thank you very much

pbar-nucleus cross sections at low energies

