LIGHT ANTIPROTONIC ATOMS

D. Gotta Institut für Kernphysik - Forschungszentrum Jülich

atomic cascade in hydrogen

X-ray intensities - density dependence

de-excitation of atomic cascade

X-ray energy - bound state QED

strong interaction

hadronic shift ε

hadronic width Γ

NUCLEON-ANTINUCLEON potential

scattering lengths $\mathbf{a} \propto \varepsilon - \mathbf{i} \Gamma/2$

Ultra-slow antirpotons - RIKEN March 2005

STRONG INTERACTION

goals

A ≤ 4 nuclei

hadronic effects in s, p, and d waves

•	ρ ρ	s-wave	spin-spin interaction	
•	ρd	p n	isospin	
•	pp, рd	p-wave	spin-orbit interaction bound states	
•			annihilation strength baryon-antibaryon asymmetry	

THEORETICAL DESCRIPTION

 $\varepsilon, \Gamma <-->$ medium + long-range part of $\overline{N}N$ interaction

Buck, Dover, Richard, Ann. Phys. (NY) 121 (1979) 47

PROTONIUM - hyperfine states

s- and p-state strong interaction effects

HISTORY

strong-interaction effects in $A \leq 4$

1984 - 1996

EXPERIMENT

general considerations

stopped antiprotons

STRONG INTERACTION

results

ANTIPROTONIC HYDROGEN

PS175: K. Heitlinger et al., Z. Phys. A 342 (1992) 359

PROTONIUM - 1s ground state

cyclotron trap + MOS CCD

comparison theory - experiment

PROTONIUM - 2p state

cyclotron trap + crystal spectrometer

Antiprotonic DEUTERIUM

s- and p-state strong-interaction effects

LEAR experiment PS207

Antiprotonic HELIUM isotope effects

M. Schneider et al., Z. Phys. A 338 (1991) 217

LEAR experiment PS175

sp	in aver	age E	Г	
<mark>р</mark> ^з Не	2р	- 17 ±	5 25±9	eV
	3d*		2.14 ± 0.18	meV
<mark>p</mark> ⁴He	2р	- 18 ±.	2 45±5	eV
	3d*		2.36 ± 0.10	meV

* from intensity balance

single - nucleon annihilation ?

$$\Gamma_{A(Z,N)} \propto Z \cdot \Gamma_{\overline{p}\,n} + N \cdot \Gamma_{\overline{p}\,p}$$

annihilation cross section

discussion and references: K. Protasov et al., Eur. Phys. J. A 7 (2001) 429

ANNIHILATION STRENGTH

VS.

atomic weight K. Protasov et al., Eur. Phys. J. A 7 (2001) 429

A. Gal, E. Friedman and C.J. Batty, Phys. Lett. B491 (2000) 219

Relative annihilation on p,n - isospin I = 0,1

$$\frac{\Gamma(^{3} \text{ He})}{\Gamma(^{4} \text{ He})} = 0.83 \pm 0.12 \text{ average } 2p + 3d$$

$$\frac{1}{\Gamma(^{4} \text{ He})} = \frac{1}{2p} + \frac{1}{2p} + \frac{3d}{2p} + \frac{3d}{2p$$

BOUND STATE QED

example

antiprotonic Hydrogen

2p hyperfine splitting

S. Boucard and P. Indelicato, to be published Veitia, Pachucki, Phys. Rev A 69 (2004) 042501

discussion see D. Gotta, Prog.Part.Nucl.Phys. 52 (2004) 133

CAPTURE & CASCADE

COULOMB EXPLOSION

atoms and molecules

T. Siems et al., Phys. Rev. Lett. 84 (2000) 4573

- symmetric molecules N₂, O₂
- compounds CO₂, C₂H₂, C₂H₂

ANTIPROTONIC HYDROGEN - series limit

high np states populated in contrast to μ H, π H

more "microscopic" cascade theory Jensen Markushin

$$n_{\max} \approx \sqrt[3]{\frac{2n_f^2}{(\Delta E/E_{\infty}-n_f)}}$$

$$n_{max} \approx 40$$
 for $\Delta E = 300 \text{ meV}$

n _{max} :	resolvable state
n _f :	final state

ELECTRONIC X-RAYS - ARGON

ELECTRONIC X-RAYS - KRYPTON

many unresolved lines ?

ELECTRONIC X-RAYS - XENON

31

TOOL KIT

antiproton "beams"							
AD MUSASHI	antiproton trap \rightarrow DC extraction \rightarrow gas cell direct measurements						
FLAIR	high intensity DC beams direct measurements + crystal spectrometer						
	future option	traps and gas jets					
X-ray detector direct	ct measurement	fast CCDs					
A. Ackens et al., IEEE vol. 46 (1999)	1995	\rightarrow pixel size 75 μ m					
H. Gorke, this workshop		\rightarrow 600 frames / s					
crystal spectrometer							
2 – 3 keV ultimate resolution asymmetric cut crys	on stals	$\Delta E = 300^* \rightarrow 200 \text{ meV}$					
10 keV "bad" resolution		$300^* \rightarrow ,,1 \text{ eV}^{\prime\prime}$					

* PS 207 and PSI ECRIT (D. Anagnostopoulos et al., to be pub in NIM A)

SUMMARY

