Study of S=-2 baryonic states at FLAIR

Dieter Grzonka Institut für Kernphysik, Forschungszentrum Jülich

A. Gillitzer, D. Grzonka, K. Kilian, W. Oelert, J. Ritman, T.Sefzick, P. Winter Forschungszentrum Jülich

> B. Bassalleck, P. Kingsberry University of New Mexico, Albuquerque, New Mexico

Contribution to: Nuclear and particle physics with antiprotons within the FLAIR LoI

FLAIR – A Facility for Low-energy Antiproton and Ion Research @ FAIR

Factor 100 more pbar trapped or stopped in gas targets than now

Study of baryon-baryon interaction \rightarrow understanding of the strong interaction

extensive data base detailed information

poor data base caculations rely on flavour SU(3) symmetry

studies limited to H-dibaryon search (H: [uu dd ss])

first proposed by Jaffe (PRL 38, 195, 1977) m(H) ~ 80 MeV/c2 below $\Lambda\Lambda$ threshold

Studies on H-particle search

table taken from: T. Sakai, K. Shimizu, K. Yazaki Prog.Theo.Phys.Suppl. 137 (2000) 121

most effective Ξ production via (K⁻ K⁺) double strangeness exchange

KEK E373: 1.66 GeV/c K⁻ \rightarrow emulsion

AGS E885: 2 GeV K⁻ : K⁻ p \rightarrow Ξ ⁻K⁺ Ξ ^{- 12}C \rightarrow ¹²_{AA}B n scintillating fibre array

Collaboration	reaction process (production/decay)	sensitive mass range
BNL E703 771	$p + p \rightarrow K^+ + K^+ + X$	$M_H = 2.0 \sim 2.5~{ m GeV}$
BNL E810 ^{86), 87), 104)}	Si + Pb collision / $H \rightarrow \Sigma^- p, Ap\pi^-$	
BNL E813 88)-92), 103), 104), 106)	$K^- + p \rightarrow K^+ + \Xi^-, (\Xi^- d)_{\text{ntom}} \rightarrow H + n$	$-15 < B_H < 80 \text{ MeV}$
BNL E830 ¹⁰⁵⁾	$K^- + {}^{3}\text{He} \rightarrow K^+ + H + n$	
BNL E836	$K^- + {}^{3}\text{He} \rightarrow K^+ + H + n$	$B_H = 50 \sim 380 \text{ MeV}$
90) - 93), 103), 104), 106)	$K^- + {}^6\text{Li} \rightarrow K^+ + H + X$	
BNL E864 ^{104), 105)}	Au + Pb collision	
BNL E885 ^{92], 94], 95), 104]}	$K^- + (p) \rightarrow K^+ + \Xi^-$,	
	$(\Xi^{-}A)_{\text{atom}} \rightarrow H + X$	
DATE Doco 95) 104)	$K^- + A \rightarrow K^+ + X + H$	
BNL E886 ²⁵⁹ , 1947	Au + Pt collision	
BNL E888 97)-99), 104), 106)	$p + A \rightarrow H + A / H \rightarrow An \text{ or } 2^{-}n,$	M 0150 M.M.
DNI 12806 100), 104), 105)	$H + A \rightarrow A + A + A$ Au + Au collision / $H \rightarrow \Sigma^- \pi \rightarrow \pi\pi^- \pi$	MH < 2150 MeV
BNL E990	$Au + Au$ consisting $H \to Z$ $p \to n\pi^- p$, $H \to Ap\pi^- p = H \to Ap \to p\pi^- p$	
BNL E910 ¹⁰¹	$H \rightarrow Ap\pi \rightarrow p\pi \ p\pi \ , H \rightarrow An \rightarrow p\pi \ n$ $p \pm A / H \rightarrow An\pi^- \ H \rightarrow \Sigma^- p$	
BNL STAB ¹²⁵ , ¹⁰²	$p + A \gamma H \rightarrow A p \pi^{-1}, H \rightarrow Z^{-1} p$ Au + Au collision	
KEK E176 ^{107)-109),115)}	$K^- + (m) \rightarrow K^+ + H$	
	$K^- + p \rightarrow K^+ + \Xi^-, \Xi^- + (p) \rightarrow H$	
KEK E224 ^{110]-115)}	$K^- + (pp) \rightarrow K^+ + H$	
	$K^- + (p) \rightarrow K^+ + \Xi^-, \Xi^- + (p) \rightarrow H$	
KEK E248 ¹¹⁶	$p + p \rightarrow K^+ + K^+ + X$	
Fermilab E791 ¹¹⁹	$H \rightarrow p + \pi^- + \Lambda$, $\Lambda \rightarrow p + \pi^-$,	
	$H \rightarrow \Lambda + \Lambda \rightarrow p + \pi^- + p + \pi^-$	
Fermilab KTeV Collab.	$p + A / H \rightarrow p + \pi^- + \Lambda$	$M_{H} = 2194$
120]		$\sim 2231~{ m MeV}$
Shahbazian et al. ⁷⁹⁾⁻⁸³⁾	$p + {}^{12}C \rightarrow H(H^+) + X /$	
	$H \rightarrow \Sigma^- + p, \ \Sigma^- \rightarrow \pi^- n$	
	$H^+ \rightarrow p + \pi^- + \Lambda, \Lambda \rightarrow p + \pi^-$ $H^+ \rightarrow \pi^+ \Lambda, \Lambda \rightarrow \pi^+ \pi^-$	
Al-lamon at al 84)	$H^+ \rightarrow p + \Lambda, \Lambda \rightarrow p + \pi$	
DIANA Collab ¹¹⁷ , ¹¹⁸	$n + A \rightarrow H + A / H \rightarrow p\pi A, A \rightarrow p\pi$ $\bar{n} + X_{2} \rightarrow K^{+}HY K^{+}K^{+}HY /$	
DIANA Collab.	$H \rightarrow \Sigma^- + p$	
Condo et al. ⁷⁸⁾	$\bar{p} + A \rightarrow H + X / H \rightarrow \Sigma^- + p$	
Ejiri et al. ⁸⁵⁾	$d \rightarrow H + \beta + \nu$, ¹⁰ Be \rightarrow ⁸ Be + H ,	$M_H < 1875.1 \text{ MeV}$
	${}^{72}\text{Ge} \rightarrow {}^{70}\text{Ge} + H + \gamma, {}^{127}\text{I} \rightarrow {}^{128}\text{I} + H + \gamma,$ ${}^{127}\text{I} \rightarrow {}^{125}\text{Te} + H + \beta^+ + \nu$	
CERN NA49 ¹²¹)	Pb + Pb collision / $H \rightarrow \Sigma^- p$, $Ap\pi$	
CERN WA89 ¹²²⁾	$\Sigma^- + A \rightarrow X + H / H \rightarrow AA, N\Xi$,	
	$H \rightarrow Ap\pi^{-}, \Sigma^{-}p, \Sigma^{0}n, An$	
CERN WA97 ¹²³⁾	Pb + Pb collision	
CERN ALICE ¹²⁵	Pb + Pb collision	
CERN OPAL ¹²⁴⁾	Z° decay	

Ξ – Production data:

$K^{-}p \rightarrow \Xi K(\pi)$	properties of Ξ^0 and Ξ^-
Heavy ion collisions → (AGS, SPS, RHIC)	multistrange yields (QGP)
$\Sigma A \rightarrow \Xi(*) X$ WA89, CERN	spectrum of Ξ excited states
$\gamma p \rightarrow K^+ K^+ \Xi^{-(0)} (\pi^-)$ CLAS , JLAB	

K⁻K⁺ double strangeness exchange using a K⁻ beam

double strangeness exchange using \overline{p} p annihilation

(s, \overline{s})	annihilation channel	branching ratio	kaon momentum
$K^{-} = \overline{u} s$	$\overline{p} p \rightarrow K^+ K^-$	1 · 10-3	$P(K^{-}) = 780 \text{ MeV/c}$
$\overline{\mathbf{K}}^0 = \overline{\mathbf{d}} \mathbf{s}$	$\overline{p} p \rightarrow K^0 \overline{K}^0$	3 · 10 ⁻³	$P(\overline{K^0}) = 780 \text{ MeV/c}$
$K^{*-} = \overline{u} s$	$\overline{p} p \rightarrow K^{*_+} K^{*}$	1.5 · 10-3	$P(K^{*-}) = 290 \text{ MeV/c}$
$\overline{\mathbf{K}}^{*0} = \overline{\mathbf{d}} \mathbf{s}$	$\overline{p} p \rightarrow K^{*0} \overline{K}^{*0}$	3 · 10-3	$P(\overline{K}^{*0}) = 290 \text{ MeV/c}$
	$\overline{p} p \to K \overline{K}^*$	1 · 10-3	$P(\overline{K}^*) = 620 \text{ MeV/c}$
$\overline{\zeta^* N \to \Xi K}$ $P(\overline{K}^*) = P_{magic}$ \downarrow $P(\Xi)_{lab} = 0$	0.6 Juggic 0.5 0.4 0.3 0.2 0.2 0.1		(*) (*) (*) (*) (*) (*) (*) (*)
	0.00 0.00 m(K	*) / GeV/c ²	$m(\overline{K}^*) / GeV/c^2$

Reaction channels for Ξ production via (\overline{K}^* , K)

K ^{∗0} p −	$\rightarrow \Xi^0 \mathrm{K}^+$	K*- n −	$\rightarrow \Xi^- K^0$
$(s\overline{d})$ (uud)	(uss) (su)	$(s\overline{u})$ (udd)	(dss) $(\overline{s}d)$

$\overline{\mathrm{K}}^{*0}$	n	\rightarrow	Ξ^0	K^0
$(s\overline{d})$ (udd)		(uss)	$(\overline{s}d)$

 $\overline{K}^{*0} \quad n \rightarrow \Xi^{-} \quad K^{+}$ (sd) (udd) (dss) (su)

$\Xi^0 \to \Lambda \ \pi^0 \ (99.5 \ \%)$	$\Xi^{-} \rightarrow \Lambda$
$c\tau = 8.71 \text{ cm}$	cτ =

$\Xi^{-} \to \Lambda \pi^{-} (99.9 \%)$
$c\tau = 4.91 \text{ cm}$

via (\overline{K}^*, K) using stopped \overline{p}

e.g. :

<u>Ξ</u>- production

geometry \rightarrow event reconstruction

Ξ^{-} p interaction

detector

plastic scintillator layer

- 1. close to the target
- 2. \sim 1m distance
- → multiplicity trigger timing

3-d tracking detector straw tubes in different directions

→ tracks of charged particles decay vertices

Rate estimates

Beam : $3 \cdot 10^5$ p/s stopped in ³He target annihilation BR into $\overline{K}^*K^* \sim 3 \cdot 10^{-3}$ 0.3 of \overline{K}^* hit remaining 2N system 0.5 of \overline{K}^* survive until interaction $\sigma(\overline{K}^*N \to K \Xi) / \sigma(\overline{K}^*N \to X) > 10^{-3}$ trigger efficiency $\sim 20 \%$ Ξ detection efficiency ~ 35 %

Summary

Production of S = -2 *baryonic states*

stopped \overline{p} annihilation efficient source for low momentum \overline{K}^*

• K^{*} momenta well matched for Ξ production in recoil-free kinematics

 \Box recoil-free kinematics results in strongly interacting ΞN systems

event reconstruction by geometry
 "simple" detector configuration

high production rates

• detailed studies possible