Antiproton-Ion-Collider A Tool for the measurement of both neutron and proton rms radii

- P. Kienle, SMI, Wien and TU, München
- Motivation
- Medium energy antiproton absorption
- Antiproton-Ion-Collider
- Cross section measurements
- N/P rms radii, c and a determination
 - [1] P. Kienle, Nucl. Instr. Meth. B 214 (2004) 191.
 - [2] H. Lenske and P.Kienle, arXiv:nucl.th/05022065v1, 25.Feb.2005
 - [3] AIC Technical Proposal to GSI January 2005

AIC Concept

- •30-100 MeV Antiproton—740A A MeV Ion(variable)
- Modification of e-ion collider
- Addition of antiproton injection and cooling up to T=100 MeV

•Fragment detection by Schottky mass spectroscopy and magnetic analysis in NESR

•Luminosity monitor by detection of Rutherford scattered antiprotons

Differences in Neutron and Proton Radii for Sn-Isotopes Theoretical predictions

Experimental Methods for rms Radii Differences

- Electron and Proton Scattering, Isotope Shift
- Antiprotonic Atoms
- Charge Exchange
 Reactions
- Knock-out Reactions

Antiproton Absorption on Neutrons or Protons

- Yields of A-1 isobars with (N-1) or (Z-1) from atomic antiproton absorption
- Absorption radius undefined
- Not directly applicable for RI-beam-nuclei
- Yields of A-1 Isobars with (N-1) or (Z-1) from medium energy antiproton absorption
- Absorption proportional to $<\!r^2\!>_n$ and $<\!r^2\!>_p$ respectively at high enough energies
- From energy dependence of absorption, c_n, a_n, c_p, a_p of Fermi distribution

Antiproton optical potential,⁵⁸Ni

anti-proton Nucleus Optical Potential central 58-Ni

Impact Parameter Dependence

n

Impact Parameter b [fm]

RIKEN 16.03.05 P. Kienle

Impact Parameter b [fm]

Energy Dependance of Absorption in Ni

- At high energies X-section saturates at geometrical limit
- At lower energies tails of nucleons contribute RIKEN 16.03.05 P. Kienle

Determination of Parameters of Fermi Distribution: c_n,a_n;c_p,a_p

- The energy dependence of $\sigma_n(T)$ and $\sigma_p(T)$ can be measured
- At high T crossections are determined by c_n and c_p respectively
- At low T the tails of the Fermi distributions contribute
- The cross sections at low T are determined by c_n and a_n, and c_p and a_p
- A detailed analysis of σ_n(T) and σ_p(T) is in progress

(SIII) The Idea of AIC in FAIR

AIC Conceptual Design

AIC Interaction Zone

AIC Luminosity, L(E)

Yield, Luminosity, Measuring Time

• Using continuous longitudinal stacking: $N_s = \tau (dN/dt)$

Ion	T _{1/2}	yield	Luminosity	Time for 104 events
⁵² Ca	12 <i>s</i>	4·10⁵ pp <i>s</i>	5 ·10 ²³ cm ⁻² s ⁻¹	~300 min
⁵⁵ Ni	0.5s	8·10 ⁷ pp <i>s</i>	4 ·10 ²⁴ cm ⁻² s ⁻¹	~35 min
¹³⁴ Sn	2.7s	8·10⁵ pp <i>s</i>	2 ·10 ²³ cm ⁻² s ⁻¹	~360 min
¹⁸⁷ Pb	34s	1·10 ⁷ pps	3 ·10 ²⁵ cm ⁻² s ⁻¹	~2 min

P/q Distributions of A-1 Nuclei

A~130:

- A & both A-1 nuclei in the acceptance
- \Rightarrow Schottky method using one ring setting

 \Rightarrow recoil detection

A~70: A & and one A-1 nucleus in the acceptance \Rightarrow Schottky method using two ring settings \Rightarrow recoil detection

A<60: A-1 nucleus not in the acceptance \Rightarrow recoil detection

- Experiments at LEAR showed that the antiproton is a quasielastic process
- The recoil momentum distribution reflects the momentum distribution of the absorbed neutron or proton
- The recoil momentum distribution can be measured by magnetic spectrometry and Schottky spectroscopy

Schottky Detection of Recoils

Luminosity Measurement

X-Sections and MS Radii

Luminosity from elastic scattering

Total reaction cross-section from reduction of primary ions with mass A

$$\sigma_T = C \left\langle r_{n+p}^2 \right\rangle = x \left(\sigma_n + \sigma_p \right)$$

$$Ldt = -\frac{dN_{elast}}{\sigma_{elast}}$$

cross-section for production of A-1 nuclei:

$$\sigma_{i=n,p} = \varepsilon_{(A-1,i)} \cdot \frac{dN_{(A-1,i)}}{Ldt}$$

 $\mathcal{E}_{(A-1,i)}$ Detection efficiency for A-1 nuclei

exp. determined loss-factor

 $=\frac{x}{C}\sigma_n$

$$x(\sigma_{n} + \sigma_{p}) = C(\langle r_{n}^{2} \rangle + \langle r_{p}^{2} \rangle)$$
$$r_{n}^{2} = \frac{x}{C} \sigma_{n} \qquad \langle r_{p}^{2} \rangle = \frac{x}{C} \sigma_{p}$$

 $x = \frac{(\sigma_n + \sigma_p)}{(\sigma_n + \sigma_p)}$

 σ_{τ}

AIC Physics Program

- Benchmarking: radii for the Sn isotopic chain
 - stable isotopes, measured with different techniques
 - plan: extending from ¹⁰⁵Sn to ¹³⁵Sn
- Radii along other closed-shell isotopic and isotonic chains
- Radii for nuclei near the drip-line in light nuclei
 transition from halo nuclei to neutron skins
- Behaviour of radii across a shape transition
 - e.g. from ⁸⁰Zr to ¹⁰⁴Zr
- Odd-even effects in nuclear radii
- Study the antiproton-neutron interaction

Summary and Outlook

- Antiproton-nucleus cross section at 740 MeV/u is proportional to $< r^2 >$
- Detection of A-1 products allows
 - determination of proton and neutron radii
 - in the same experiment (same systematic uncert.)
 - in a model independent way
 - parameters of Fermi distribution from energy dependence
- AIC is feasible in terms of technology and physics output
- Simple counting experiment using Schottky method or recoil detectors (once the collider runs)
- AIC allows systematic investigation of
 - Neutron skins
 - Transition from halos to skins
 - Odd-even staggering in radii
 - Shape coexistence and its effect on neutron and proton radii
 - Nucleon-antiproton interaction

AIC Collaboration

Antiproton-Ion Collider Collaboration

- Spokesperson / Deputy:
- Project Manager / Deputy:

Beller, Peter AKBosch, FritzALaCargnelli, Michael BLaFabbietti, Laura CMFaestermann, Thomas CRFrankze, Bernhard ASIFuhrmann, Hermann BSIHayano, Ryugo S.DSiHirtl, AlbertBVHomolka, Josef CYKienle, Paul B.CWKozhuharov, Christophor AZ

R. Krücken^c / J. Zmeskal^A P. Kienle^c / L. Fabbietti^c

Krücken, Reiner ^C Lenske, Horst ^E Litvinov, Yuri ^A Marton, Johann ^B Nolden, Fritz ^A Ring, Peter ^C Shatunov, Yuri ^F Skrinsky, Alexander N. ^F Suzuki Ken, ^C Vostrikov, Vladimir A. ^F Yamaguchi, Takayuki ^G Widmann, Eberhard ^B Wycech, Slawomir ^H Zmeskal, Johann ^B

- Institute A, Gesellschaft für Schwerionenforschung, Darmstadt, Germany (GSI)
- Institute B, Stephan Meyer Institut, Vienna, Austria (SMI)
- Institute C, Technische Universität München, Munich, Germany (TUM)
- Institute D, University of Tokyo, Tokyo, Japan (UoT)
- Institute E, Justus-Liebig Universität Giessen., Giessen, Germany (JLU)
- Institute F, Budker Institute of Nuclear Physics, Novosibirsk, Russia (BINP)
- Institute G University of Saytama, Saytama, Japan.(UoS)
- Institute H, Andrzej Soltan Institute for Nuclear Studies, Warsaw, Poland (IPJ)

🖥 MLL

Antiproton optical potential $f_{\overline{p}N}(T_{Lab},q) = \frac{ik}{4\pi} \sigma_{\overline{p}N}(T_{Lab}) \left(1 - i\epsilon\right) F_{\overline{p}N}(q^2)$ $F_{\overline{p}N}(q^2) = e^{-\beta^2 q^2}$ $t_{\overline{p}N}(T_{Lab},q^2) = \frac{2\pi\hbar}{M} f_{\overline{p}N}(T_{Lab},q^2)$ $U_{opt}(\mathbf{r}) = \sum \int \frac{d^3q}{2\pi^3} \rho_N(q) t_{\overline{p}N}(T_{Lab}, q^2) e^{i\mathbf{q}\cdot\mathbf{r}}$

 $U_{opt} = U_c + V + iW$

$$\begin{array}{l} \overbrace{\left(-\frac{\hbar^{2}}{2\mu}\overrightarrow{\nabla}^{2}+U_{opt}-T_{lab}\right)}\Psi^{(+)}(\mathbf{k},\mathbf{r})=0 \\ \\ \Psi^{(+)}(\mathbf{k},\mathbf{r})\rightarrow e^{i\mathbf{k},\mathbf{r}}+f_{\overline{p}A}(\hat{k})\frac{e^{ikr}}{r} \qquad S_{\ell j}=\eta_{\ell j}e^{2i\delta_{\ell j}} \\ \\ \sigma_{abs}(\ell j)=\frac{4\pi}{k^{2}}\frac{2j+1}{2s+1}(1-|S_{\ell j}|^{2})=\frac{4\pi}{k^{2}}\frac{2j+1}{2s+1}(1-\eta^{2}) \\ \\ \sigma_{abs}=\sum_{\ell j}\sigma_{abs}(\ell j) \\ \\ \sigma_{abs}=\frac{4\pi}{k}\int d^{3}r\Psi^{(+)\dagger}(\mathbf{k},\mathbf{r})\frac{-2\mu}{\hbar^{2}}\Im U_{opt}(\mathbf{r})\Psi^{(+)}(\mathbf{k},\mathbf{r}) \\ \\ \sigma^{(q)}_{abs}=\frac{4\pi}{k}\int d^{3}r\Psi^{(+)\dagger}(\mathbf{k},\mathbf{r})-\frac{2\mu}{\hbar^{2}}W^{(q)}(\mathbf{r})\Psi^{(+)}(\mathbf{k},\mathbf{r}) \end{array}$$