

特徴保存ノイズ除去 フィルタ:平滑化 (Smoothing)

hin Yoshizawa: shin@riken in

1.	精度とbilateralフィ	Algorithm 2 $O(N)$ Bilateral Filter
	ルタのパラメータを 与える:	Input: error ε , dimensionality n , spatial bandwidths $\sigma^{g_1} \in \mathbb{R}^n$, tonal bandwidth $\sigma^{g_2} \in \mathbb{R}$, targets $\{\mathbf{x}\}$, sources $\{\mathbf{y}\}$, number of targets N , number of sources M , scalar image intensity
~	r: radius of far/near- field interactions:	{ <i>I</i> (x)}. Called Functions: FGT(·).
	<pre>> r=4(float) > r=6(double)</pre>	Output: $\{I^{\text{new}}(\mathbf{x})\}$.
/	epsilon: a user specified error parameter.	$ \begin{array}{l} \text{Require: } L > 0, \exists (\mathbf{x}) \geq 0, \exists (\mathbf{y}) \geq 0, \\ 1: \{q\} \leftarrow \{l(\mathbf{y}_1), l(\mathbf{y}_2), \dots, l(\mathbf{y}_N)\}, \mathbf{y}_j \in \mathbf{y}, \\ 2: \{1\} \leftarrow \{1, 1, \dots \}, \\ 3: \{\mathbf{u}\} \leftarrow \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_N\} : \mathbf{u} \ni \mathbf{u}_i \leftarrow (\mathbf{x}_i, l(\mathbf{x}_i)). \end{array} $
2.	Dataを(n+1)次元へ	4: $\{\mathbf{v}\} \leftarrow \{\mathbf{v}_1, \mathbf{v}_2,, \mathbf{v}_M\}$: $\mathbf{v} \ni \mathbf{v}_j \leftarrow (\mathbf{y}_j, I(\mathbf{y}_j))$. 5: $\mathbf{\sigma} \leftarrow (\mathbf{\sigma}^{g_1}, \mathbf{\sigma}^{g_2})$.
3. ~	FGTs を適用: Sharp Error Estimate: X, Wan and G, E, Karniadakis, J, of Computational Physics, 2006.	6: $\{f_i\} \leftarrow FGT((n + 1), \sigma, \{q\}, \{u\}, \{v\}, N, M, E).$ 7: $\{g_i\} \leftarrow FGT((n + 1), \sigma, \{1\}, \{u\}, \{v\}, N, M, E).$ 8: for $i = 1$ to N do 9: $I^{new}(\mathbf{x}_i) \leftarrow \frac{f_i}{E}.$
		10: end for 11: Return $\{I^{\text{new}}(\mathbf{x})\} \leftarrow \{I^{\text{new}}(\mathbf{x}_1), I^{\text{new}}(\mathbf{x}_2), \dots I^{\text{new}}(\mathbf{x}_N)\}.$

