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Abstract:

Curvature-based surface energies are frequently used in mathematics, physics, thin plate and shell engineer-

ing, and membrane chemistry and biology studies. Invariance under rotations and shifts makes curvature-

based energies very attractive for modeling various phenomena. In computer-aided geometric design, the

Willmore surfaces and the so-called minimum variation surfaces (MVS) are widely used for shape model-

ing purposes. The Willmore surfaces are invariant w.r.t conformal transformations (Möbius or conformal

invariance), and studied thoroughly in differential geometry and related disciplines. In contrast, the mini-

mum variation surfaces are not conformal invariant. In this paper, we suggest a simple modification of the

minimum variation energy and demonstrate that the resulting modified MVS enjoy Möbius invariance (so

we call them conformal-invariant MVS or, shortly, CI-MVS). We also study connections of CI-MVS with

the cyclides of Dupin. In addition, we consider several other conformal-invariant curve and surface energies

involving curvatures and curvature derivatives. In particular, we show how filtering with a conformal-

invariant curve energy can be used for detecting salient subsets of the principal curvature extremum curves

used by Hosaka and co-workers for shape quality inspection purposes.
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1 Introduction

The so-called Bernoulli-Euler’s elastica curves were

first considered by Bernolli at the end of the 17th century in

relation to a mechanical equilibrium problem for elastically

bending shapes. Later, Euler introduced a curvature-based

formulation of elastica [5] and considered a curvature-

based energy
∫

k2 ds, where k and ds are the curvature and

arc length element of a curve, respectively. Since then the

elastica and related curvature-based curve and surface en-

ergies have been widely studied in mathematics, physics,

engineering, computer vision, biochemistry, architecture,

and other disciplines. See [13] for a historical survey of

the elastica.

A natural extension of the elastica to surfaces is given

by the well-known Willmore surfaces [28, 29] which min-

imize the elastic bending energy (Willmore energy)

∫ ∫

(k2max + k2min) dA (1)

where kmax, kmin, and dA are the principal curvatures

and area element of a surface, respectively. We assume

that kmin ≤ kmax. The Willmore surfaces possess beau-

tiful mathematical properties. In particular, they are in-

variant under conformal transformations: the so-called

Möbius invariance [27] and studied thoroughly in differ-

ential geometry [10] and related mathematical disciplines

[7, 9, 3, 21, 15]. The Willmore energy (1) measures a devi-

ation from sphericity and is currently a subject of intensive

researches in geometric modeling [2, 24]; see also refer-

ences therein.

Moreton and Séquin introduced the so-called minimum

variation curves (MVC) [18] and surfaces (MVS) [19]

which bend shapes as smoothly as possible, where the

bending smoothness is modeled by the variation of curva-

tures, minimizing the MVC energy
∫

(dk/ds)2ds and MVS

energy
∫ ∫

(e2max + e2min) dA (2)

where emax = ∂kmax/∂tmax and emin = ∂kmin/∂tmin

are the first order principal curvature derivatives w.r.t. their

corresponding principal directions tmax and tmin. The

MVC and MVS energies measure the magnitude of the rate

of change of curvatures, and provide more aesthetic shapes

than the Willmore surfaces. The MVS energy (2) also mea-

sures deviation from special surfaces called Dupin’s cy-

clides (see Figure 1) which are characterized by the condi-

tions emax = 0 = emin and which are often used as CAD

primitives.



Figure 1: Examples of Dupin cyclides.

Various modifications of the MVC energy were consid-
ered in [12] including∫ ∫

[e2max + (
∂kmax

∂tmin

)2 + e
2

min + (
∂kmin

∂tmax

)2] dA ·

∫ ∫
dA (3)

where the factor
∫∫

dA is used to maintain the scale-

invariance.

Unfortunately, MVS, their modifications as those from

[12] and other high-order curvature-based energies used for

shape modeling applications (e.g.
∫∫

|∇H|2 dA [30] where

∇H is the surface gradient of the mean curvature) are not

conformal invariant.

In this paper1, we introduce a novel conformal-invariant

surface energy (4) which we call the conformal-invariant

MVC (CI-MVC) energy. We also study connections of

CI-MVS with the cyclides and curvature-based surface

creases which also enjoy conformal invariance. In particu-

lar, efficient filtering the surface creases with a conformal-

invariant curve energy is demonstrated. All numerical ex-

periments in this paper are performed on surfaces approxi-

mated by dense triangle meshes.

2 Conformal Invariant MVS Energy

The conformal invariant minimum variation surfaces

(CI-MVS) are the minimizers of the energy functional
∫ ∫

√

e2max + e2min dA (4)

where a conformal-invariant energy remains unchanged

under the conformal transformations consisting of transla-

tions, rotations, scaling, and spherical inversions. Confor-

mal transformations have been employed in many CG and

CAD applications e.g. geometric algebra [14], pose and

motion estimations [25], and surface classification [8]. In

addition, spherical inversions are also useful for geometric

computing tasks such as visibility computation of point set

surfaces [16] and chord length parameterization of Bézier

surfaces [1]. See also Section 3 where we discuss why in-

variance under conformal transformations (instead of only

rigid motions) is important in aesthetic shape design.

Proof for conformal invariance of (4). The principal

curvatures and directions (kmax, kmin, tmax, and tmin)

are obviously invariant under any rigid motions (transla-

tions and rotations) because they do not depend on any

surface parameterization and choice of a coordinate sys-

tem. Consequently, emax and emin are also translational-

and rotational-invariants. Since it is a straightforward com-

putation, we omit the derivations of

kα =
1

α
k, eα =

1

α2
e (5)

where α is a constant scaling factor, kα = kαmax, k
α
min and

eα = eαmax, e
α
min are the principal curvatures and their cor-

responding derivatives of the scaled surface r
α = αr as-

sociated with k = kmax, kmin and e = emax, emin, respec-

tively. The scale invariance property is shown by
∫ ∫

√

(eαmax)
2 + (eαmin)

2 dAα =

∫ ∫

√

e2max + e2min dA

where dAα = α2dA is the area element of r
α. Now it

remains to demonstrate the inversion invariance of (4).

2.1 Inversion Invariance
Consider a surface r̃ obtained from r by the inversion

w.r.t. the sphere of radius c centered at the origin of coor-

dinates

r̃ = c2r/r2, r2 = r · r.
Then the length and area elements of r̃ and r are related by

ds̃ = c2ds/r2, dÃ =
c4

r4
dA. (6)

Direct computations (see [26, Art. 82-83] or Appendix A

of this paper) show that the principal curvatures of r̃ are

given by

k̃max = −r2

c2
kmin − 2

(r · n)
c2

, (7)

k̃min = −r2

c2
kmax − 2

(r · n)
c2

, (8)

1It is an extension of our previous work [31]. The main difference from [31] is the numerical comparisons of the proposed and conventional energies

under spherical inversions.



where n is a unit normal of r and k̃min ≤ k̃max [26, Art. 82-

83]. The curvature lines of r are mapped onto the curvature

lines of r̃ such that t̃max = tmin and t̃min = tmax, where

t̃max and t̃min are the principal directions corresponding to

the principal curvatures k̃max and k̃min, respectively.

One can easily observe that (6), (7), and (8) imply the

inversion invariance of the energy

∫ ∫

(k̃max − k̃min)
2 dÃ

corresponding to (1). Since
∫∫

kmaxkmin dA becomes a

constant depending only on topology of r from the Gauss-

Bonnet theorem (see, for example, [22, p. 155]), minimiz-

ing

∫ ∫

(k2max + k2min) dA− 2

∫ ∫

kmaxkmin dA

is equivalent to minimizing (1).

Curvature Derivatives. Differentiating k̃max and k̃min

in (7) and (8) w.r.t. the parameters v and u, respectively,

gives

∂k̃max

∂v
= −2

r

c2
rv · r
r

kmin − r2

c2
∂kmin

∂v
− 2

rv · n+ r · nv

c2
,

∂k̃min

∂u
= −2

r

c2
ru · r
r

kmax −
r2

c2
∂kmax

∂u
− 2

ru · n+ r · nu

c2
.

In a small vicinity of non-umbilical point P of r, let us

consider the lines of curvature parameterized by their arc

lengths. Then the surface is locally represented in para-

metric form r = r(u, v) for which

ru = tmax, rv = tmin,

and the Rodrigues’curvature formula (see, for instance,

[22, p. 94]) gives

nu = −kmaxtmax, nv = −kmintmin.

Now differentiating k̃max and k̃min in (7) and (8) along

the non-corresponding curvature lines of r gives

∂k̃max

∂v
=

∂k̃max

∂tmin
= −2

r

c2
tmin · r

r
kmin − r2

c2
emin +

−2
tmin · n− kmintmin · r

c2
= −r2

c2
emin,

where tmin · n = 0 (because the principal directions live

in the tangent plane of r) and similar computations give us
∂k̃min

∂u
:

∂k̃max

∂v
= −r2

c2
emin,

∂k̃min

∂u
= −r2

c2
emax. (9)

Now let us denote by ũ and ṽ the arclength parameter-

izations of the k̃max and k̃min curvature lines of r̃, respec-

tively, in a small vicinity of point P̃ ∈ r̃, the inversion

image of P ∈ r. Then, according to the first formula of

(6), we have

dũ = c2dv/r2, dṽ = c2du/r2. (10)

In view of (9) and (10), we have

∂k̃max

∂t̃max

=
∂k̃max

∂ũ
=

∂v

∂ũ

∂k̃max

∂v
=

r2

c2
(−r2

c2
emin),

∂k̃min

∂t̃min

=
∂k̃min

∂ṽ
=

∂u

∂ṽ

∂k̃min

∂u
=

r2

c2
(−r2

c2
emax).

Consequently, the curvature derivatives ẽmax =
∂k̃max/∂t̃max and ẽmin = ∂k̃min/∂t̃min relate to emax and

emin by the following equations:

c2

r2
ẽmax = −r2

c2
emin,

c2

r2
ẽmin = −r2

c2
emax. (11)

Substituting (6) and (11) to (4) shows the inversion in-

variance property:

∫ ∫

√

ẽ2max + ẽ2min dÃ =

∫ ∫

√

e2max + e2min dA.

It seems that the cross MVS energy (3) can not be modi-

fied such that it becomes inversion-invariant, since we have

the terms depending on the principal directions of r:

c2

r2
∂k̃max

∂t̃min

= −r2

c2
∂kmax

∂tmin
+

2

c2
(tmax · r)(kmax − kmin),

c2

r2
∂k̃min

∂t̃max

= −r2

c2
∂kmin

∂tmax
+

2

c2
(tmin · r)(kmin − kmax).

3 Aesthetic Shapes and Curvature-based Creases

The CI-MVS energy (4) is closely related to the cy-

clides of Dupin and curvature-based surface creases. The

cyclides were introduced by Dupin at the beginning of the

19th century, and have been studied in connection with var-

ious shape modeling tasks. See [4] for a historical survey

and [6] for recent applications of the cyclides in geomet-

ric modeling as a CAGD primitive. The family of cyclides

includes spheres, cylinders, cones, and tori.

Mathematically, the cyclides are characterized by the

condition emax = 0 = emin, and obviously they are the

best possible aesthetic shapes in terms of the MVS (2) and

CI-MVS (4) energies. This can be interpreted by a concept

of surface creases, the curves on a surface along which the

surface bends sharply, described via extrema of emax and

emin:

emax = 0,
∂emax

∂tmax
< 0 and emin = 0,

∂emin

∂tmin
> 0.



r (top) and r̃ with c = 1.0 (bottom) T ≥ 0.0 T ≥ 0.302 T ≥ 7.3
F = 1.53M, sr = 4.795, EB(r) = 2904, EM (r) = 1.812× 107, EC(r) = 4320,

sr̃ = 3.12, EB(r̃) = 2906, EM (r̃) = 9.444× 106, and EC(r̃) = 4321.

Figure 2: The images demonstrate how well our thresholding scheme of (14) eliminates the unessential features of inversion dual crest

lines.

Such curvature extremum curves, also called ridges-

ravines and crest lines, have been employed in quality con-

trol of free-form surfaces [11] and also have numerous sci-

ence and engineering applications (see [32] and references

therein). It is interesting to mention that the ridge points

and cyclides processes zero values for emax and emin but

the cyclides do not have any creases since their second cur-

vature derivatives of the cyclides are also zero everywhere

∂emax/∂tmax = 0 = ∂emin/∂tmin. This implies that the

best aesthetic shapes in terms of a family of MVS energies

consist of a set of cyclide patches whose boundaries be-

come a set of ridges representing shape features. Similar

concept has been employed for aesthetic shape modeling

from feature lines [19, 20].

By (5) and (11), the ridges and cyclides are invariant

under the conformal transformations. Therefore the con-

formal invariance property of aesthetic surfaces minimiz-

ing the variation of curvatures is also preferable. Conse-

quently, our CI-MVS energy (4) has advantages over the

traditional MVS energy (2).

Using (5) and (11) we arrive at

eαmaxds
2
α = emaxds

2 = −ẽminds̃
2, (12)

eαminds
2
α = eminds

2 = −ẽmaxds̃
2 (13)

and can easily construct a number of conformal-invariant

differential forms [32] (in principle, they can be derived

from a complete conformal-invariant system derived in

[23]). For example, a conformally invariant curve energy

on a surface

T =

∫

√

|emax|+ |emin| ds (14)

is useful for filtering the unessential curvature extremum

curves detected on a surface by eliminating the curves

whose (14) are smaller than a given threshold value. Since

(14) measures deviation from the cyclides, the remaining

curves are more salient than the traditional curvature ex-

tremum curves. In addition, the above filtering scheme im-

proves noise-robustness significantly when we use (14) for

a detection of the curvature extremum curves on a mesh

approximating a smooth surface, see Figure 2.

Equations (12) and (13) also lead to some interesting

relations between scale and inversion transformations and

curvature derivatives. For example, the rate of change

of area by the scale and inversion transformations are in-

versely proportional to a ratio of the curvature derivatives:

∂Ã

∂A
= − emin

ẽmax
= −emax

ẽmin
,

∂Aα

∂A
=

emax

eαmax

=
emin

eαmin

,

eαmax

eαmin

=
emax

emin
=

ẽmin

ẽmax
.

4 Inversion Dual Crest Lines

The so-called crest lines are formed by the perceptually

salient ridge points and consist of the surface points where



the magnitude of the largest (in absolute value) principal

curvature attains a maximum along its corresponding line

of curvature [17]:

kmax > |kmin|, emax = 0,
∂emax

∂tmax
< 0,

kmin < −|kmax|, emin = 0,
∂emin

∂tmin
> 0.

The subset of crest lines of r such that

kmax > |kmin|, k̃min < −|k̃max|, emax = 0,
∂emax

∂tmax
< 0,

kmin < −|kmax|, k̃max > |k̃min|, emin = 0,
∂emin

∂tmin
> 0

are dual to the subset of crest lines of r̃ such that

k̃min < −|k̃max|, kmax > |kmin|, ẽmin = 0,
∂ẽmin

∂t̃min

> 0,

k̃max > |k̃min|, kmin < −|kmax|, ẽmax = 0,
∂ẽmax

∂t̃max

< 0.

Note that the concave condition of r̃ for the convex con-

dition of r, and vice versa is considered.

5 Numerical Experiments

In Figures 2-6, we examined our energies (4) and (14)

and dual crest lines on several surfaces approximated by

the triangle meshes, where F is a number of triangles (M:

Mega), and sr and sr̃ are the sizes of r and r̃ (i.e. diago-

nal length of bounding box), respectively. The differential

quantities on the triangle meshes are approximated by us-

ing the method in [32].

Figures 3-5 show differences between the traditional

and inversion dual crest lines. The dual crest lines of r̃

are calculated on r̃ and then mapped onto r for visualiza-

tion purpose. We obtain remarkably similar patterns for the

inversion dual crest lines (see the bottom images of Figure

4 and (c,d) of Figure 5). Figures 2 and 6 demonstrate how

well (14) eliminates the unessential creases located on the

parts close to the cyclides.

Let EB(·), EM (·), and EC(·) be the Willmore (1),

MVS (2), and CI-MVS (4) energies. The EB(·) and EC(·)
are numerically well preserved under spherical inversions

compared with EM (·) according to our numerical experi-

ments. Our CI-MVS is much useful for evaluating surface

quality compared with the other energies in terms of invari-

ance property and shape aesthetics, although it is computa-

tionally expensive than others.

We have also compared CI-MVS (4) energy intro-

duced in this paper with the scale-invariant MVS (SI-MVS)

[19, 12]
∫ ∫

(e2max + e2min) dA ·
∫ ∫

dA (15)

energy denoted by ES(·) under spherical inversions in Fig-

ure 7. Numerical experiments suggest that CI-MVS is bet-

ter than the SI-MVS in terms of Möbius invariance prop-

erty as expected from our theoretical analysis.

6 Conclusion

The paper introduces a novel surface energy (CI-MVS

energy) by modifying the minimum variation energy in or-

der to satisfy invariance under conformal transformations.

The CI-MVS energy consists of the principal curvatures

and their first order derivatives w.r.t. corresponding prin-

cipal directions, measures deviation from the cyclides, and

provides better invariance properties than the conventional

energy. We also studied connections of the CI-MVS with

the cyclides and curvature extremum curves from a view

of aesthetic shape design. In addition, we show how filter-

ing with a conformally invariant curve energy on a surface

improves a detection of the salient surface creases. Future

work will aim at developing numerical methods for min-

imizing the CI-MVS efficiently for the given initial and

boundary conditions.
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minimum energy networks, in Proceedings of ACM Sympo-

sium on Solid Modeling Foundations and CAD/CAM Ap-

plications, ACM, 1991, pp. 291–301.

[19] H. P. MORETON AND C. H. SÉQUIN, Functional optimiza-
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[21] T. RIVIÉRE, Analysis aspects of willmore surfaces, Inven-

tiones Mathematicae, 174 (2008), pp. 1–45.

[22] D. J. STRUIK, Lectures on Classical Differential Geometry:

Second Edition, Dover Publications, Inc. New York, 1988.

[23] C. P. WANG, Surfaces in Möbius geometry, Nagoya Math-
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Appendix A. Sphere Inversions and Surface Curva-

tures. Given a surface r = r(u, v), consider its spherical

inversion with radius c w.r.t. the origin of coordinates

r̃ = r̃(u, v) =
c2

r2(u, v)
r(u, v),

where r2 = r2(u, v) = r · r. Since
∂(r·r)
∂u

= 2ru · r =

2 ∂r

∂u
r = 2rur and

∂(r·r)
∂v

= 2rv · r = 2 ∂r

∂v
r = 2rvr, we

have ru = ru·r

r
and rv = rv·r

r
such that the basic tangents

of r̃ are given by differentiating r̃ w.r.t. u and v:

∂r̃

∂u
= r̃u = −2

c2

r4
(ru · r)r+ c2

r2
ru, (16)

∂r̃

∂v
= r̃v = −2

c2

r4
(rv · r)r+

c2

r2
rv (17)

where ru = ∂r

∂u
and rv = ∂r

∂v
are the basic tangents of r.

Then, their inner products give the coefficients of the first

fundamental form of r̃:

Ẽ = r̃
2
u =

c4

r4
E, F̃ = r̃u · r̃v =

c4

r4
F, G̃ = r̃

2
v =

c4

r4
G,

where E = r
2
u, F = ru · rv , and G = r

2
v are the coef-

ficients of the first fundamental form of r. Thus, the area

element of r̃ is given by

∫ ∫

dÃ =

∫ ∫

√

ẼG̃− F̃ 2 dudv =

∫ ∫

c4

r4
dA,

where dA =
√
EG− F 2 dudv is the area element of r.

Let n be the unit normal vector of r. The unit normal

vector of r̃ is given by

ñ =
r̃u × r̃v

√

ẼG̃− F̃ 2
= − 2

r2
((rv · r)ru − (ru · r)rv)× r+ n,

By using the formulas of vector triple product:

a×(b×c) = (a·c)b−(a·b)c, (a×b)×c = (c·a)b−(c·b)a,

we obtain

ñ = − 2

r2
(r× n)× r+ n =

2

r2
(r · n)r− n.

Differentiating (16) and (17), and their inner products

with ñ lead the coefficients of the second fundamental form

of r̃:

L̃ = r̃uu · ñ = (8
c2

r6
(ru · r)2r− 2

c2

r4
(ruu · r+ E)r+

−4
c2

r4
(ru · r)ru +

c2

r2
ruu) · (

2

r2
(r · n)r− n)

= − c2

r2
(L+

2

r2
(r · n)E),

and similar computations give us

M̃ = r̃uv · ñ = − c2

r2
(M +

2

r2
(r · n)F ),

Ñ = r̃vv · ñ = − c2

r2
(N +

2

r2
(r · n)G),

where L = ruu · n, M = ruv · n, and N = rvv · n are the

coefficients of the second fundamental form of r.

Substitute the above results into the following formulas

of the mean and Gaussian curvatures

H̃ =
1

2

ẼÑ − 2F̃ M̃ + G̃L̃

ẼG̃− F̃ 2
= −r2

c2
H − 2

(r · n)
c2

,

K̃ =
L̃Ñ − M̃2

ẼG̃− F̃ 2
=

r4

c4
K + 4

r2

c4
(r · n)H + 4

(r · n)2
c4

where H = 1
2
EN−2FM+GL

EG−F 2 and K = LN−M
2

EG−F 2 are the

mean and Gaussian curvatures of r, respectively. Let k̃max

and k̃min be the principal curvatures of r̃ and then sub-

stitute the above equations in H̃ = (k̃max + k̃min)/2,

K̃ = k̃maxk̃min, k̃max = H̃ +
√

H̃2 − K̃, and k̃min =

H̃ −
√

H̃2 − K̃ with kmax ≥ kmin, c2 > 0, and r2 ≥ 0
gives

k̃max = −r2

c2
kmin − 2

(r · n)
c2

,

k̃min = −r2

c2
kmax − 2

(r · n)
c2

where kmax and kmin are the principal curvatures of r.



(a) (b) (c)

Figure 3: (a): Input mesh r. (b): Transformed mesh r̃ with c = 0.1. (c): Magnified image of (b). F = 1.25M, sr = 2.031, EB(r) = 8449,

EM (r) = 8.1262 × 1012, EC(r) = 12585, sr̃ = 0.5, EB(r̃) = 8468, EM (r̃) = 3.3567 × 1016, and EC(r̃) = 12605. The difference

between EC(r) and EC(r̃) is very small compared with the MVS energy difference (EM (r) and EM (r̃)).

(a) (b) (c) (d)

Figure 4: The top (bottom) images (a) and (b,c,d) present the crest lines (inversion dual crest lines) of r and r̃, respectively, where the input

meshes are shown in images (a) and (b,c) of Figure 3. The traditional crest lines (top images) of r and r̃ do not coincide when their convex

and concave lines are exchanged, while the inversion dual crest lines (bottom images) share common geometric patterns.

(a) (b) (c) (d)

Figure 5: Filtered crest lines (inversion dual crest lines) are demonstrated in (a) and (b) ((c) and (d)) whose threshold value (14) is greater

than 1.5. Images (a,b) and (c,d) correspond to top and bottom images of Figure 4, respectively.



c = 1.5, T ≥ 0.0, sr̃ = 1.658, EB(r̃) = 8453, EM (r̃) = 1.0146× 1014, and EC(r̃) = 12581.

c = 0.5, T ≥ 0.5, F = 1.35M, sr = 1.609, EB(r) = 1.387× 105, EM (r) = 7.81× 1013, EC(r) = 1.073× 105,

sr̃ = 5.697, EB(r̃) = 1.382× 105, EM (r̃) = 7.857× 1014, and EC(r̃) = 1.07× 105.

c = 10.0, T ≥ 2.0, F = 1.96M, sr = 200.2, EB(r) = 2.112× 104, EM (r) = 4.072× 108, EC(r) = 2.387× 104,

sr̃ = 82.63, EB(r̃) = 2.118× 104, EM (r̃) = 1.046× 1012, and EC(r̃) = 2.408× 104.

c = 0.25, T ≥ 2.0, F = 2.06M, sr = 1.483, EB(r) = 3.774× 104, EM (r) = 3.774× 104, EC(r) = 6.821× 104,

sr̃ = 1.3, EB(r̃) = 3.775× 104, EM (r̃) = 4.78× 1010, and EC(r̃) = 5.007× 104.

(a) (b) (c) (d)

Figure 6: Images (b) and (c) show the inversion dual crest lines of (a) and (d) which correspond to r and r̃, respectively. The mesh model

shown in the top image is generated by translating the model of Figure 3. Remarkably similar feature patterns are extracted on (b) and (c),

and we can confirm inversion duality of them as well as small differences between EC(r) and EC(r̃).



(a):c = 1.0, F = 0.27M. (b):c = 0.1, F = 0.87M.

(c):c = 0.5, F = 0.62M. (d):c = 2.0, F = 0.013M. (e):c = 100.0, F = 0.8M.

(f):c = 10.0, F = 0.35M. (g):c = 2.0, F = 0.25M.

(h):c = 20.0, F = 0.31M. (i):c = 20.0, F = 0.4M. (j):c = 100.0, F = 0.5M.

(a) (b) (c) (d) (e)

ES(r) 5.26× 1011 1.5× 1016 3.13× 109 2.14× 106 1.0× 108

ES(r̃) 1.02× 1014 8.56× 1016 3.18× 1010 2.27× 107 1.9× 109

EC(r) 1.02× 104 2.12× 104 1.49× 103 7.68× 102 5.04× 103

EC(r̃) 1.02× 104 2.12× 104 1.55× 103 8.85× 102 4.99× 103

(f) (g) (h) (i) (j)

ES(r) 1.5× 109 3.46× 107 2.85× 1010 2.74× 108 8.64× 1011

ES(r̃) 1.02× 1011 7.86× 108 1.86× 1013 8.32× 1011 2.17× 1014

EC(r) 7.88× 103 1.75× 103 1.91× 103 3.11× 103 2.44× 104

EC(r̃) 7.93× 103 1.81× 103 2.06× 103 3.36× 103 2.23× 104

Figure 7: The images (a-j) and their corresponding values demonstrate how well our CI-MVS (4) energy is preserved under spherical

inversions compared with the SI-MVS (15) energy. Here the left and right images correspond to the input and transformed meshes via

spherical inversions.


