Centers & Labs

RIKEN Brain Science Institute

Laboratory for Circuit Mechanisms of Sensory Perception

Laboratory Head: Hokto Kazama (Ph.D.)
Hokto  Kazama(Ph.D.)

Animals decide and act based on past and current sensory information. The major goal of our lab is to mechanistically understand how neural processing of external input guides behavior and how this processing is modulated depending on the environmental and behavioral contexts.

To achieve this goal, we are using the fruit fly Drosophila melanogaster, which has been increasingly recognized as one of the ideal organisms for investigating the neural circuit basis of behavior. Due to the relatively small number of central neurons, many neurons in the fly brain are identifiable and accessible. We can monitor the responses of these neurons to sensory stimuli by in vivo electrophysiology and imaging. Various genetic tools are available for not only labeling but also manipulating neurons. On the other hand, technologies have been developed to monitor individual flies behaving in a virtual environment where external stimuli can be precisely controlled online. With these data in hand, we will utilize quantitative modeling approaches to better understand the computation and the neural mechanisms underlying behavior at cellular, synaptic and circuit levels.

Main Research Field

Complex systems

Related Research Fields

Biological Sciences

Keywords

  • Sensory processing
  • Decoding
  • Neural circuits
  • Sensorimotor transformation

Selected Publications

  1. Inada, K., Tsuchimoto, Y., Kazama, H.:
    "Origins of cell-type-specific olfactory processing in the Drosophila mushroom body circuit."
    Neuron 95, 357-367 (2017).
  2. Badel, L., Ohta, K., Tsuchimoto, Y., Kazama, H.:
    "Decoding of context-dependent olfactory behavior in Drosophila."
    Neuron 91, 155-167 (2016).
  3. Kazama H.:
    "Systems neuroscience in Drosophila: conceptual and technical advantages."
    Neuroscience 296, 3-14 (2015).
  4. Oizumi, M., Satoh, R., Kazama, H., Okada, M.:
    "Functional differences between global pre- and postsynaptic inhibition in the Drosophila olfactory circuit."
    Frontiers in Computational Neuroscience, 6:14 (2012).
  5. Kazama, H. , Yaksi, E., Wilson, R.I.:
    "Cell death triggers olfactory circuit plasticity via glial signaling in Drosophila."
    The Journal of Neuroscience 31, 7619-7630 (2011).
  6. Satoh, R., Oizumi, M., Kazama, H., Okada, M.:
    "Mechanisms of maximum information preservation in the Drosophila antennal lobe."
    PLoS One 5 (5), e10644 (2010).
  7. Kazama, H., Wilson, R.I.:
    "Origins of correlated activity in an olfactory circuit."
    Nature Neuroscience 12, 1136-1144 (2009).
  8. Kazama, H., Wilson, R.I.:
    "Homeostatic matching and nonlinear amplification at identified central synapses."
    Neuron 58, 401-413 (2008).

Lab Members

Principal Investigator

Hokto Kazama
Laboratory Head

Core Members

Yoshiko Takagi
Research Scientist
Keita Endo
Research Scientist
Laurent Badel
Research Scientist
Damien Mercier
Research Scientist
Hiroshi Shiozaki
Research Scientist
Hongping Wei
Visiting Researcher
kazumi Ohta
Technical Staff I
Mie Akutsu
Assistant

Contact information

2-1 Hirosawa, Wako, Saitama 351-0198, Japan

Email: hokto_kazama [at] brain.riken.jp

Related links

Recent research results