Quadrupole susceptibility of Gd-based filled skutterudites

Takashi Hotta^{1,2} and Fumiaki Niikura¹

- ¹ Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
- ² Advanced Science Research Center, Japan Atomic Energy Agency, Ibaraki 319-1195, Japan

It is shown that quadrupole susceptibility can be detected in Gd compounds contrary to our textbook knowledge that Gd^{3+} ion induces pure spin moment due to the Hund's rules in an LS coupling scheme. The ground-state multiplet of Gd^{3+} is always characterized by $J{=}7/2$, where J denotes total angular momentum, but in a $j{-}j$ coupling scheme, one f electron in $j{=}7/2$ octet carries quadrupole moment, while other six electrons fully occupy $j{=}5/2$ sextet, where j denotes one-electron total angular momentum. For realistic values of Coulomb interaction and spin-orbit coupling, the ground-state wavefunction is found to contain significant amount of the $j{-}j$ coupling component. From the evaluation of quadrupole susceptibility in a simple mean-field approximation, we point out a possibility to detect the softening of elastic constant in Gd-based filled skutterudites.