## FBi．

## Science View

## 理化学研究所 仁科加速器科学研究センター

## 中性子過剩なスズ同位体の巨大共鳴観測に成功



図 観測されたスズ－132（ ${ }^{132} \mathrm{Sn}$ ）のガモフ・テラー巨大共鳴のスペクトル
横軸の励起エネルギーは，原子核振動の周波数に比例する。黒い点は箴測デー夕を，黒線は各権則データをつなげた一山構造のスペクトルを示し，それぞれの曲線は異なるランダウ・ミグダルパラメーター（ $\mathrm{g}^{\prime}$ ）を用いた理論計算の結果 を表す。スペクトルと理論計算の比較により， $\mathrm{g}^{\prime}=0.68$ と決定された。な极，測定された共鳴周波数は2．4 $10^{222} \mathrm{~Hz}$ だった。上部に，パイ中間子の短距離左力 の強さおよびパイ中間子凝縮の起こりやすさの関保を矢印で示している。すなわ ち，巨大共鳴現象の励起エネルギーが大きいほど，パイ中間子由来の短距離斥力 が強く，パイ中間子疑縮は起こりにくいといえる。

## 乳がんの「ゲノム医療」に貢献

乳がんは，日本人女性で最も患者数の多いがんであり，そのうち $5 \sim 10 \%$ の患者 は一つの「病的バリアント（個人間での1 カ所のゲノム配列の違い）」が原因にな


図 乳がんの診断年齢ごとの病的バリアント保有者の割合
40歳末満で乳がんと診断された人の約 $15 \%$ は病的バリアント保有者であるが，年齢区分が上がるごとにその割合は下がる。ただし， 80 歳以上でも約 $3 \%$ は病的バリアント保有者である。

1935年に湯川秀柎博士によって理論的に提案された後，1947年に発見された「パ イ中間子」は，原子核内の陽子と中性子の間に働く相互作用を理解する上で最も重要な中間子である。このパイ中間子が引き起こす「パイ中間子凝縮」という相転移現象が，1973年にA•B・ミグダルによって予言された。この現象は通常の原子核 ではまだ観測されていないが，地球から遠く離れた「中性子星」では起きている可能性があると考えられている。
今回，理研を中心とする国際共同研究グループは，理研の重イオン加速器施設「RIビームファクトリー」において生成された中性子過剰な二重魔法数「スズー $132\left({ }^{132} \mathrm{Sn}\right)$ 原子核」ビームを液体水素標的に照射し，引き起こされた荷電交換 （ $\mathrm{p}, \mathrm{n)} \mathrm{反} ⿸ 广 心$. て測定することで，パイ中間子凝縮の性質を反映する「ガモフ・テラー巨大共鳴」 と呼ばれる巨大共鳴現象の観測に世界で初めて成功した。得られたスペクトルと理論計算の比較から，パイ中間子凝縮が太陽質量の1．4倍より重い中性子星の中にあ る通常の原子核密度の 2 倍以上の密度を持つ環境で起こっている可能性が高いとい う結論が得られた。

本研究成果により，今後，パイ中間子凝縮が起こる条件が明らかになり，中性子星の構造や急速冷却現象の解明が進むと期待できる。


## ■プロフィル

ささの・まさき 2008年3月，東京大学大学院理学系研究科物理学専攻修了，博士（理学）。ミシガン州立大学リサーチア ソシエイト，理化学研究所研究員を経て，2018年4月より現職。原子核中の $\pi$ 中間子場の働きが生み出す不思議に魅せられ て研究を行っている。
■コメント＝日本が誇るR I ビームファクトリーを使って，世界の物理学研究をリードしていきたい。

理化学研究所 生命医科学研究センター
基盤技術開発研究チーム
チームリーダー 桃沢 幸秀
ると推定されている。乳がんでは，BRCA1，BRCA 2 など 11 個の原因遺伝子が知られている。遺伝子検査により，乳がん患者が病的バリアントを持つことが分か れば，より適切な治療が可能になる。しかし，病的バリアントは人種によって大き く異なるため，日本人独自のデータベース構築が必要とされていた。
今回，理研を中心とする国際共同研究グループは11の原因遺伝子について，バイ オバンク・ジャパンにより収集された日本人の乳がん患者群7051人および対照群 1万1241人のDNA（世界最大規模）を，独自に開発したゲノム解析手法を用いて解析した。その結果， 244 個の病的バリアントを同定するとともに，日本人に多い病的バリアント，遺伝子ごとの乳がんのリスク，病的バリアントを持つ人の臨床的特徴などを明らかにした。これらの解析結果については，病的バリアントデータベー スを構築し，そのサマリー情報は国内外の公的データベースにも登録，活用される予定である。

今後，これらの情報は，日本人の乳がんにおいて，患者一人一人にあった「ゲノ ム医療」に貢献すると期待される。


## ■プロフィル

ももざわ・ゆきひで 2007年東京大学大学院農学生命科学研究科修了，博士（獣医学）。ベルギー国リエージュ大学博士研究員，理化学研究所研究員などを経て，2015年から現職。ま た，2018年から横浜市立大学生命医科学研究科の客員教授も兼任。
－コメント＝大腸がんや膵がんなど他のがんも同栐に解析 し，ゲノム医療に貢献したいと思います。

## 理化学研究所神戸地区が一般公開を開催

理化学研究所の神戸地区（生命機能科学研究センター，計算科学研究センタ一，健康生き活き羅針盤リサーチコンプレックス推進プログラム）は，11月23日（金•祝）に一般公開を開催する。研究現場の公開や施設の見学ツアー，科学の不思議がわかる体験型イベントを実施するほか，最先端の研究を紹介する講演会も開く。スーパーコンピュータ「京」は，今回が最後の一般公開とな り，後継機であるポスト「京」の試作機も展示する。また，理研の周辺にある他の施設（大学，研究機関，企業）の公開も同時に行われ，高校生を対象とし た講演会とトークセッション「サイエンスアゴラ in KOBE」も甲南大学ポ ートアイランドキャンパスレクチャーホールで開催される。入場無料。
$\diamond$ 日時 11月23日（金•祝） $10: 00 \sim 16: 30$（入場は16：15）まで
$\diamond$ 場所 神戸地区東エリア，西エリア（神戸市中央区港島南町6－7－1，同 $6-7-3$ ，同 $2-2-3$ ，最寄駅・ポートライナー「医療センタ －」駅）
神戸地区南エリア（神戸市中央区港島南町 7－1－26，最寄駅・ポー トライナー「京コンピュータ前」駅）
詳細は特設ホームページ参照
http ：／／www．kobe．riken．jp／openhouse／18
$\diamond$ 問い合わせ 理化学研究所神戸事業所 $\boldsymbol{Z} 078 \cdot 306 \cdot 0111$（代表）

