翻訳構造解析研究チーム

チームリーダー 伊藤 拓宏

図 翻訳反応中のリボソームに結合する
IRESを捉えたクライオ電子顕微鏡構造
mRNAのキャップ構造に依存して宿主細胞の翻訳を開始したリボソ ームに結合したC型肝炎ウイルス（HCV）のIRES（赤）と，合成途中 のタンパク質（ペプチド）を結合したペプチジルtRNA（緑）が同時に観察されたことから，IRESは進行中のmRNAの翻訳反応を邪魔するこ となく，40Sサブユニットに結合しているのが分かる。HCVのゲノムR NAは1本鎖であるが，IRESの領域では分子内の相補的な塩基同士が水素結合し，複雑な立体構造をとる。

C型肝炎ウイルス（HCV）が引き起こすC型肝炎は，肝がんにつながる重大な病気である。1本鎖RNAをゲノムに持つHCVは，感染した細胞内で自身のRNAを宿主の翻訳装置であるリボソームに読み取らせ，ウイルス増殖に必要な多数のタン パク質を効率良く合成する。これまでに，ウイルスタンパク質の効率良い合成に は，HCVのRNA配列に存在する「IRES」と呼ばれる領域が寄与していることは分かっていたが，IRESがどのように翻訳効率を向上させているかは謎であった。

今回，理研を中心とする共同研究グループは，クライオ電子顕微鏡による立体構造解析や蛍光顕微鏡による 1 分子観察などの最先端の計測技術により，ヒトタンパ ク質を合成している最中のリボソームの40Sサブユニットに，HCVのIRESが結合 し，次に始まる翻訳反応でHCVゲノムを優先的に読み取らせていることを明らか にした。この乗っ取り機構は，HCVのみならずその近縁のウイルスでも保存され ていると考えられ，ウイルスの感染力の源となっているといえる。

今後，IRESとリボソームの 40 Sサブユニットの相互作用を阻害する薬剤を開発 できれば，効果的な抗ウイルス薬になると期待できる。翻訳は，生物が持つ最も基本的な反応の一つだが，従来は見過ごされてきた新しい翻訳機構や翻訳制御機構が潜んでいる可能性がある。今後の研究によって，それらの機構が明らかになるもの と考えられる。

■プロフィル
いとう・たくひろ 2001年東京大学大学院理学系研究科博士課程修了，博士（理学）。ハーバード大学医学校博士研究員，東京大学大学院理学系研究科助手，理化学研究所ユニットリー ダーなどを経て，19年4月から現職。

■コメント二構造生物学を手法の軸にしながら，多角的に翻訳のメカニズムを解明したい。
－理化学研究所 仁科加速器科学研究センター
R1物理研究室
室長 櫻井 博儀

■プロフィル
さくらい・ひろよし1993年東京大学大学院理学系研究科博士課程修了，博士（理学）。東京大学助手，助教授，理化学研究所研究員などを経て，2005年より理化学研究所主任研究員， 13年より仁科加速器科学研究センター副センター長，18年から現職。

■コメント＝自在に原子核を変換•生成する方法を見出し，未知核の性質を明らかにしたい。

持される直接的で強い証拠である。
本研究成果は，原子核の内部構造を理解する手掛かりになるのみならず，原子番号 26 の鉄以上の重元素の合成（ r 過程）の謎を解くための鍵になると期待できる。

図 各同位体の第一 $\mathbf{2}^{+}$励起準位の励起エネルギーと原子核の存在限界の予想線

これまで実験的に観測された原子核の励起エネルギーをそれぞれの棒の高さで図示した。陽子または中性子が魔法数をとるとき，励起エネルギー が高くなる。同時に，現在理論的に予測されている原子核の存在限界（中性子ドリップライン）を青線で図示。 ${ }^{78} \mathrm{Ni}$ 原子核は，二重魔法数を持つ原子核（ $\left.{ }^{4} \mathrm{He}, ~{ }^{16} \mathrm{O}, ~{ }^{40} \mathrm{Ca}, ~{ }^{56} \mathrm{Ni}, ~{ }^{132} \mathrm{Sn}, ~{ }^{208} \mathrm{~Pb}\right)$ の中で，最も中性子ドリ ップラインに近い最後の原子核とされる。本研究により，${ }^{78} \mathrm{Ni}$ の魔法性を示す直接的証拠が得られた。

7，8月に仙台，筑波地区で研究施設を一般公開

理化学研究所は宮城県仙台地区と茨城県筑波地区の研究施設や研究室を一般 に公開する。一般公開日には科学技術や研究所の運営に関し，広く一般国民の関心と理解を深めてもらうため，研究室•施設の公開のほか，講演会，体験イ ベントなども開催する。

仙台地区では，小学生から参加できる実験教室「光を食べるスライムを作ろ う！～色はなぜ見えるのか？～」のほか，さまざまなイベントを実施。筑波地区では子供たちに大人気のマウス塗り絵やiPS細胞など研究に必要な細胞リソ ースを涷結保存している施設が見学できる。入場無料。

【仙台地区】
場 所：〒980－0845 宮城県仙台市青葉区荒巻字青葉519－1399
日 時：7月27日（土）9：30～16：00（入場は15：30まで）
問い合せ：仙台地区一般公開事務局 $\boldsymbol{O} 022 \cdot 228 \cdot 2111$

【筑波地区】

場 所：〒305－0074 茨城県つくば市高野台 3－1－1
日 時：8月3日（土）10：00～16：30（入場は16：00まで）
問い合せ：筑波地区一般公開事務局 $\boldsymbol{Z} 029 \cdot 836 \cdot 9111$

