広報活動

Print

2013年4月4日

理化学研究所

思春期に刺激の多い環境で過ごすと脳の左右差と協調リズムが出現

-ラットで左右にある海馬の脳波を同時計測、ガンマ波の大きな変化発見-

隔離飼育と豊かな環境飼育のイメージ図
刺激に富む豊かな環境での集団飼育
思春期にあたる生後3~6週目のラットをケージで隔離飼育する群と、遊具などがある豊かな環境で集団飼育する群の2群で海馬の脳波を比較した。

私たちの体は左右対称に見えますが、実は心臓が左側にあるなど左右非対称です。これは遺伝情報に基づくものです。脳では、言語中枢が大脳の左半球にあるように、機能が左右非対称に分布していますが、左右非対称性を形成するメカニズムは不明でした。

これまでの研究で、刺激にあふれた豊かな環境で集団飼育された思春期のマウスやラットは、脳の左右にある海馬が担う空間記憶や学習能力が向上することが分かっていました。そこで、理研の研究チームは、飼育環境の違いという外的要因で脳機能の左右の非対称性に影響が出るのかを調べるために、ラットの脳波を計測し、左右の海馬間の神経活動を探ってみました。

まず、生後3~6週目の思春期にあたるラットを1匹だけでケージで飼育する「隔離飼育群」と、遊具を入れたケージで6~8匹で集団飼育する「豊かな環境飼育群」に分け、左右の海馬の脳波を計測しました。その結果、豊かな環境下のラットでは脳波のひとつのガンマ(γ)波の振幅が大きくなり、加えて右側のγ波の振幅が左側より大きくなっていることを発見しました。さらに、豊かな環境下のラットは左右のγ波のリズムが同期することも分かりました。

また、豊かな環境飼育群のラットに対して、記憶や学習に深く関わる「シナプス可塑性(シナプスの情報伝達効率が長期的に変化する能力)」を左右するNMDA受容体の働きを抑制したところ、γ波の変化は起きませんでした。実際に海馬の情報出力細胞のシナプスを観察すると、豊かな環境飼育群の右側のシナプス密度が左側に比べ、高くなっていました。これによって、飼育環境の違いでシナプス数が変化し、神経回路の再編が左右非対称に起きていることが明らかになりました。

今後、どのような分子メカニズムで左右の機能の分別が生じたのかが解明されたら、ヒトなどの脳の左右形成メカニズムに迫ることができるかもしれません。

理化学研究所
脳科学総合研究センター 神経グリア回路研究チーム
チームリーダー 平瀬 肇 (ひらせ はじめ)