広報活動

Print

2013年5月29日

理化学研究所

超伝導体で挟んだ強磁性体中を長距離流れるスピン流の原理を発見

-発熱がなく超低消費電力で動作する次世代スピントロニクスデバイスへ道筋-

超伝導/強磁性接合におけるクーパー対の波動関数の空間変化の概念(上)とスピン流(実線)とジョセフソン電流(破線)の強磁性体の膜厚依存性(下)

超伝導/強磁性接合におけるクーパー対の波動関数の空間変化の概念図(左)とスピン流(実線)とジョセフソン電流(破線)の強磁性体の膜厚依存性(右)

スピンが注目されています。といってもテニスのトップスピンやフィギュアスケートのスピンではありません。電子が持っている角運動量のことで、磁気の起源でもありますが、なかなか頭の中にスッと入らず、ピンとこないですね。厳密に言うと正確ではないですが、電子の自転をスピンと考えればどうでしょう。それは、ちょうどフィギュアスケートでいうスピンのような運動を電子がしていると想像できてピンとくると思います。ここでは、電子の自転運動をスピンと考えて下さい。ちなみに、一定方向へ電荷が輸送されると電流になります。一方、スピンが輸送されるとスピン流となります。スピン流は電荷の流れを伴わないでスピンを輸送するために熱を発生しないという特徴があって、低消費電力で動作可能なデバイスの開発につながると期待されています。しかし、スピン流は電流とは違って、遠くまで輸送する事が難しいという問題点があります。そのために、現在、デバイス実現に向けて、スピンを効率良く遠くまで輸送(伝搬)する理論の構築や実験が活発化しています。

理研の研究チームは「どこまでスピン流を長距離輸送できるか」に挑戦しました。磁化の方向が異なる2層の強磁性体を、冷却すると電気抵抗がゼロになる超伝導体で挟んだ「強磁性ジョセフソン接合」を想定し、強磁性ジョセフソン接合の中を流れるスピン流を、数式で理論的に解き明かそうとしました。その結果、スピン流は電圧降下することなく、数十ナノメートルから数百ナノメートルにわたって強磁性体中を伝搬することが証明できました。これまでのスピン流の伝搬距離は10ナノメートル以下でしたので、数百倍も距離が伸びたことになります。この長距離伝搬は、近接効果により強磁性体に誘起された「スピン三重項クーパー対」によって可能となったことを明らかにしました。近接効果とは、超伝導体と超伝導体にならない物質を結合すると、クーパー対が超伝導体にならない物質に侵入して、その物質が超伝導性を示すことです。

今回考案した強磁性ジョセフソン接合では、電流(今回の場合はジョセフソン電流)がゼロになるにもかかわらず、スピン流の減衰は1桁程度にとどまり、十分に観測可能な値であることも分かりました。この結果は、スピン三重項クーパー対によってスピン流と電流を分離できることを示しています。このクーパー対のスピン流と電流の分離は、物性物理学上の新しい現象であり、研究の新しいステージを提供すると期待できます。また、近接効果によって強磁性体中にスピン三重項クーパー対が誘起されることを、実験的に証明できるデバイスの作製にもつながります。

理化学研究所
准主任研究員研究室 柚木計算物性物理研究室
基礎科学特別研究員 挽野 真一(ひきの しんいち)