

「ソフトインターフェースの分子科学」

News Letter Vol. 10

文部科学省科学研究費補助金 新学術領域研究 (研究領域提案型) 領域番号:2005 領域略称名:ソフト界面 領域代表者:前田 瑞夫

< 目 次 >

<i>ワークショップのご案内</i>	1
研修コースのご案内	63
アウトリーチ活動報告	66
関連イベント報告	68
関連イベント情報	72
新聞・報道等(2012 年 4 月~2012 年 7 月)	74

<u>ソフトインターフェースの分子科学ワークショップ</u> 「ソフト界面と計測・センシング」プログラム

 日 時: 8月8日(水)~8月9日(木)
 日 程: 8月8日 12:55~17:45 シンポジウム 18:15~20:00 交流会
 8月9日 9:30~15:45 シンポジウム

会 場:

(シンポジウム)	東京医科歯科大学	湯島キャンパス	歯学部特別講堂(歯科南	棟4F)
(交流会)	11		ファカルティラウンジ	(M&D タワー26F)

8月8日(水)

12:55-13:00	理化学研究所	前田瑞夫(ごあいさつ)
13:00-13:45	産業技術総合研究所	青木 寛
13:45-14:30	大阪大学	谷口正輝
14:30-15:15	産業技術総合研究所	佐藤 縁
15.15-15.30	コートーブレイク	
10.10 10.00		
15:30-16:15	理化学研究所	Hsiao-hua (Bruce) Yu
15:30-16:15 16:15-17:00	理化学研究所 東京大学	Hsiao-hua (Bruce) Yu 加藤 大
15:30-16:15 16:15-17:00 17:00-17:45	理化学研究所 東京大学 東京医科歯科大学	Hsiao-hua (Bruce) Yu 加藤 大 松元 亮

8月9日(木)

9:30-10:15	東京医科歯科大学	由井伸彦
10:15-11:00	東京理科大学	大塚英典
11:00-11:45	物質・材料研究機構	有賀克彦
11:45-12:45	ランチ	
12:45-13:30	ポスター発表	
13:30-14:15	横浜国立大学	渡邊正義
14:15-15:00	物質・材料研究機構	魚崎浩平
15:00-15:45	北海道大学	叶 深
	閉 会	

以 上

簡便・迅速を目指したラベル化不要の高感度遺伝子センサ

青木 寛

独立行政法人産業技術総合研究所 環境管理技術研究部門

1. はじめに

遺伝子の機能を核酸レベルで解析する一般的手法として、蛍光標識に基づく DNA マイクロ アレイ法が現在最も普及しているが、いくつかの本質的な問題点も明らかになりつつある。 すなわち、(1)ターゲットの蛍光標識やポリメラーゼ連鎖反応(PCR)法等による核酸増幅を 行う必要があること、(2)ハイブリッド形成しなかったターゲット核酸の徹底洗浄が必要であ ること、(3)システムや測定装置が高価で大型である、などである。網羅的な遺伝子解析の必 要性が、研究施設内に留まらず臨床や環境計測の現場でも高まりつつあることから、上記問 題点の克服は喫緊の課題である。現在このような煩雑なサンプル処理を大幅に省いた安価で コンパクトな新規分析法の開発が望まれているが、開発例はごくわずかであり、臨床や環境 の現場における真の意味での実用化はまだまだ先と言えそうだ。

演者はこの点を解決するため、安価で省スペース化が容易な電気化学的手法に基づき、簡 便・迅速な遺伝子検出技術の開発に携わってきた。本発表では、ターゲット核酸の標識化お よびマーカーの添加などの煩雑なサンプル処理が不要な(ラベル化フリー、マーカーフリー) 網羅的遺伝子検出法の基盤技術について紹介する。併せて、これら遺伝子検出技術のデバイ ス化に関する最近の検討についても紹介する。

2. 電気化学的手法によるラベル化フリー遺伝子検出

2.1 センサ表面電荷の変化による遺伝子検出法(アプローチ1)¹⁾⁻⁵⁾

多数の負電荷を有する核酸が、電極表面上に固定されたプローブとハイブリッド形成する と、電極表面の電荷が負に変化することを利用した。また、ミスマッチ排除能の高さから、 バックボーンに電荷を持たないペプチド核酸(peptide nucleic acids, PNA)を使用した。金電 極表面上に、システインを導入したプローブ PNAを固定化してセンサとした。がん抑制遺伝 子 p53 遺伝子のミスマッチ部位を認識する鎖長 10 塩基のプローブ PNA_10 を合成し、ターゲ ット DNA をモデル核酸として使用した。ハイブリッド形成に伴い、測定溶液中の電気化学活 性マーカー陰イオン([Fe(CN)₆]⁴)の酸化還元反応が大きく抑制されることを指標に、検出下 限 10⁻⁶ M で検出可能なことを見出した。一方、一塩基変異(SNPs)を有するターゲット DNA の場合には、100 倍以上濃い濃度でもセンサは応答しなかった。さらに、塩基鎖長・配列と ハイブリッド安定性との関係について検討したところ、プローブ鎖長が 15 塩基、20 塩基と 長くなるに従い、検出下限が 10⁻⁹ M、10⁻¹² M と向上することが分かった。

次に、ハイブリッド形成前後のセンサ表面電荷の変化をさらに強調させることで、検出下

限の向上が可能かどうか検討した。測定溶液中で正電荷を有する単鎖チオールで予め表面を 修飾し、これによりハイブリッド形成前後で表面電荷が正から負に変化するようにした。マ ーカーには陽イオンである[Ru(NH₃)₆]³⁺を使用したところ、5.1×10⁻¹⁰ M の検出下限でターゲッ トが検出可能だった。ハイブリッド形成前後での表面電荷の変化をより強調した結果、検出 下限が3桁以上向上した。また、ミスマッチ DNA の場合、10⁻⁷ M 以上でも応答はほとんど観 測されなかった。さらに、プローブ PNA/ターゲット DNA の塩基鎖長を 10 塩基から 13 塩 基とし、各種測定条件を最適化したところ、10⁻¹⁵ M レベルでの配列選択的な高感度検出も可 能だった。このように、ターゲットのラベル化不要な高感度遺伝子検出法の開発に成功した。

2.2 外部信号発生団を用いない遺伝子検出法(アプローチ2)⁶⁾

さらなる簡便化を図るため、外部信号発生団である電気化学活性マーカーが不要な検出系の開発を目指した。そのため、プローブに信号発生部位として電気化学活性基を結合させた 新たな遺伝子プローブを開発した。遺伝子プローブとして、ターゲット認識部位である PNA の5'末端にフェロセンおよび3'末端にシステインを導入したコンジュゲート分子を新たに設 計した。本センサのターゲットに対する配列選択的な応答を検討するため、内分泌攪乱物質 に対し発現が亢進する遺伝子配列を認識する鎖長22塩基のプローブ Fc-PNA_22を合成し、 金電極表面上に固定化してセンサとした。詳細な電気化学的検討により、プローブがハイブ リッド形成の前後で柔軟な1本鎖構造から剛直な2本鎖構造へと変化し、プローブ末端のフ ェロセンのセンサ表面への接近が阻害され、酸化還元反応が大きく減少することが分かった。

ターゲット濃度に対する応答依存性を矩形波ボルタモグラムにおけるフェロセン酸化還元 電流値の減少を指標に観測したところ、1.44×10⁻¹¹ M を検出下限としてピーク電流値が大きく 減少した。一方、ミスマッチ DNA の場合には、μM レベルの濃度でも応答は観測されなかっ た。このように、本センサ原理はラベル化が不要であるのみならず測定溶液中へのマーカー の添加をも必要としないことから、センサ単独で遺伝子検出を可能とする"self-report"自己報 告型センサとして、簡便・迅速な遺伝子検出法を提供するものと期待される。

2.3 シグナルオン型遺伝子検出法(アプローチ3)⁷⁾

さらに、ハイブリッド形成後に信号増加させることが高感度化へのポイントと考え、アプ ローチ2で開発した遺伝子プローブを基礎として、新規"signal-on"型遺伝子プローブを開発し た。このプローブは、プローブ両末端に電気化学活性基および活性抑制基として、フェロセ ンおよびβ-シクロデキストリンを有する。プローブが柔軟な構造を持つ1本鎖時には両者は 分子内で包摂するため、フェロセンの電気化学活性は抑制される。一方、プローブが剛直な 構造を持つ2本鎖時には包摂は解消し、フェロセンは電気化学活性を取り戻す。結果、ハイ ブリッド形成に伴って電気化学反応は増大し、"signal-on"の検出が可能となる。

ターゲット核酸が存在しない溶液中と比較して、ターゲット核酸を含む溶液中では、末端

フェロセンの酸化還元電位は-62 mV のポテンシャルシフトが観測された。同時に、+0.3 V で の電流値の変化に着目すると、約5倍の電流増加が観測された。これらのことは、ターゲッ ト核酸と遺伝子プローブのハイブリッド形成に伴いフェロセンの電気化学活性が回復し、そ の結果、"signal-on"型にターゲットの有無が検出可能なことを示している。

3. 微量高精度アレイスポッティング技術による遺伝子センサのデバイス化およびマルチ化⁸⁾⁻¹⁰⁾

開発した遺伝子センサをマルチ化し1つのデバイス上に配置することで、環境診断が可能 かどうかの検討のため、マイクロ電極アレイチップを作製し、各マイクロ電極表面に上記開 発した遺伝子プローブを固定化することで遺伝子センサアレイチップの開発を目指した。

一般に、化学物質の生体影響評価には、数十~数百種程度の遺伝子発現の同時観察が必要 とされている。そこで、光リソグラフィ技術により、8×12マトリックスを形成する 96 ch 電 極アレイチップ(直径:280 µm,間隔:1 mm)を作製した。高集積アレイチップ作製用に開 発した新規スポッタにより、96ch アレイチップ上のマイクロ電極上に2種類の遺伝子プロー ブ PNA_20 および PNA_22 を固定化し、遺伝子センサアレイチップを作製した。アプローチ 1 の遺伝子検出法に基づき、PNA_22 と相補鎖の DNA 溶液に浸漬して測定したところ、 PNA_22 を固定した遺伝子センサのみが、選択的にかつ再現性良く応答することが分かった。 同様に、より多極の遺伝子センサアレイチップについても検討を行い、エストロゲン応答遺 伝子などの検出へ応用した。遺伝子のモデルとして 15~22 mer の DNA をターゲットとして 使用し、プローブ PNA とのハイブリッド形成前後におけるセンサ応答の変化を解析したとこ ろ、ミスマッチ DNA に対して、相補・非相補を完全に判別することに成功した。

4. 結言

本研究における遺伝子検出手法は、ラベル化フリーでターゲットの検出が可能であるため、 簡便・迅速な遺伝子検出を可能にする。特に、電気化学活性団を取り付けた遺伝子プローブ の場合、ラベル化が不要であるのみならず測定溶液中へのマーカーの添加をも必要としない。 簡便・迅速な一次スクリーニングとしての遺伝子解析の重要性は今後ますます大きくなるも のと予想されるが、本研究で開発した遺伝子プローブに基づく遺伝子診断技術は、医療分野・ 材料分野でも大きなインパクトを与える可能性を秘めていると考えている。

参考文献

Umezawa, Y. et al., *Anal. Chem.*, **76**, 320A-326A (2004), 2) Aoki, H. et al., *Electroanalysis*, **12**, 1272-1276 (2000), 3) Aoki, H. et al., *Electroanalysis*, **14**, 1405-1410 (2002), 4) Aoki, H. et al., *Analyst*, **128**, 681-686 (2003), 5) Aoki, H. et al., *Analyst*, **130**, 1478-1482 (2005), 6) Aoki, H. et al., *Analyst*, **132**, 784-790 (2007), 7) Aoki, H. et al., *Supramol. Chem.*, **22**, 455-460 (2010), 8) Aoki, H. et al., *Anal. Sci.*, **24**, 929-935 (2008), 9) Aoki, H. et al., *Anal. Sci.*, **26**, 367-370 (2010), 10) Aoki, H. et al., *Anal. Sci.*, **24**, 817-825 (2008)_o

ナノポアデバイスの1分子科学

大阪大学 産業科学研究所

谷口 正輝

はじめに

細胞膜には、直径数 nm 以下の細孔(ナノポア)が、無数に開いている。ナノポアは、細胞膜 を貫通するチャネルタンパク質により作られ、ナノポアを通るイオンや1分子を識別する。 この1分子識別機能を固体デバイス上で実現することを目指してはじまったナノポアの研 究は、今や、パーティクルカウンターや次々世代DNAシークエンサーへと応用展開され ている。

現在、世界中で熾烈な研究開発競争が繰り広げられているナノポアには、1分子をイオン電流変化で識別するタイプと、1分子をトンネル電流で識別するタイプの2種類がある。 イオン電流タイプは、分子によって妨げられるイオン電流の減少量で1分子を識別する。

トンネル電流タイプは、分子を介してナノ電 極間を流れるトンネル電流の増加量で1分子 識別を行う。ともに、SiO₂からなるナノポア デバイスであるとすると、SiO₂-溶液界面と溶 液一分子界面(ソフト界面)が、ナノポア内 の1分子ダイナミクスを支配する。ナノポア 内を流れるイオン電流・トンネル電流と1分 子ダイナミクスは、強く相関すると予測され るが、電磁気学・流体力学・量子力学が複雑 に入り混じったナノポアシステムの研究は始 まったばかりである。

図1. ナノポアデバイスの概念図.

イオン電流型ナノポアで1分子の構造を調べる

イオン電流型ナノポアでは、ナノポアの上下に配置された電極間の電圧により、帯電した 分子が、電気泳動で移動する(図 2a)。ナノポア内に分子がいなければ、大きなイオン電流 が流れる(図 2b)。一方、ナノポア内に分子が入ると、イオンの流れが遮られるためイオン 電流量が減少する。イオン電流の変化量は、ナノポア内に存在する分子の体積に比例する。 ナノポア内を通過する1本のDNAの体積をVとすると、2つ、3つに折り畳まれた1本 のDNAの体積は2V、3Vになるので、イオン電流の変化量が2倍、3倍と変化する。「イ オン電流変化量∝分子の体積」の関係を利用すると、1本のDNAの折り畳み構造を調べ ることができる。 図 2(a)のような直径約 50nmのナノポアデバイスを 用いて、λ-DNA水溶液のイオ ン電流の時間変化を測定した。 得られた電流—時間プロファ イルを見ると、特徴的なイオ ン電流の変化が観察された (図 2c)¹。イオン電流変化量の ヒストグラムを作成したとこ ろ、20pAの整数倍にピークが 得られ、折り畳みの無い1本 のDNAがナノポアを通過する ときのイオン電流変化量が、 20pAであることが分かった。

図2.イオン電流型ナノポアデバイス.(a)デバイス構造、(b)電流— 時間プロファイル、(c)λ-DNA 水溶液の電流—時間プロファイル.

詳細な電流—時間プロファイルの解析から、図 2cのように、n回の折り畳み構造が、20pAx (n+1)の電流変化に対応していることが分かった。

さて、イオン電流型ナノポアでは、DNAは電気泳動で移動する。SiO₂の表面は負に帯電 しているので、SiO₂—溶液界面にはカチオンが集まり、負に帯電しているDNAの泳動方向 とは逆向きの電気浸透流が生じる。つまり、ナノポア内のDNAは、電気泳動と電気浸透流 の2つの流れの和で移動することになる。一方、DNAの構造をモニターしているイオン電 流量の変化には、「イオン電流量変化∝イオン量の変化」の関係が成り立つ。元々、体積の 小さいナノポア内では、折り畳み数が増えてくると、DNAがナノポア内に引き連れてくる カチオン数も、イオン量の変化に寄与することになる。引き連れてくるカチオン量は、溶 液—DNA界面に依存する量となり、カチオン種やpHに大きく依存する。このように、ナノ ポア内では、SiO₂—溶液界面とDNA—溶液界面(ソフト界面)が、DNAの運動とイオン電 流に大きく寄与する。2つの界面を制御する技術が、イオン電流型ナノポアデバイスのコ ア技術であり、私達は、SiO₂に埋め込んだゲート電極を持つナノポアデバイスを開発して いる²⁴。

トンネル電流型ナノポアで1分子を識別する

ナノポアの直径(2nm 以下)と同じ電極間距離を持つナノギャップ電極の間を、分子が通 過するとき、分子を介して電極間にトンネル電流が流れる(図 3a、3b)。トンネル電流は、 分子の電子状態に敏感に応答するため、トンネル電流の値から、分子の種類を識別するこ とができる。この原理は、米国立衛生研究所が進める\$1000 ゲノムプロジェクトのターゲ ットである次々世代 DNA シークエンサーの原理である。ところが、この原理は、2010 年 まで実現されることはなく、空想の科学と思われていた。

図3. トンネル電流型ナノポア. (a)デバイス構造、(b)電流—時間プロファ イル、(c)DNA と(d)RNA を作る4つの塩基分子の1分子コンダクタンスの ヒストグラム.

電極間距離が、約 1nmのナノギャップ電極を機械的破断接合(Nano-fabricated Mechanically Controllable Break Junction:Nano-MCBJ)で作製した⁵。Nano-MCBJを用いて、 DNAとRNAを作るそれぞれ4つの塩基分子水溶液の電流—時間プロファイルを測定したと ころ、スパイク状の電流シグナルが得られた。各塩基分子について、約1000個のシグ ナルを積算して作成した1分子電気伝導度(コンダクタンス)のヒストグラムには、各塩 基に対応したピーク電流が得られた(図 3c、3d)^{6,7}。それぞれ4つのピーク電流が異なるの で、ピーク電流を読むことで、1塩基分子を識別することができる。また、トンネル電流 を用いると、現在のDNAシークエンサーでは識別できない、メチル化シトシンやオキソグ アニン等、変異塩基分子も識別することができる⁸。さらに、3塩基からなるDNAと7塩基 からなるRNAの塩基配列決定も、この1分子識別法により実現された⁹。

トンネル電流型ナノポアデバイスでは、電極間距離と分子の大きさが同程度であるため、 SiO₂—溶液界面とDNA—電極界面(ソフト界面)が、ナノポア内の1分子ダイナミクスと トンネル電流に大きく寄与する。ここでも、1分子ダイナミクス制御技術が、ナノポア内 の現象を解明するカギとなる。

文献

[1] Sci. Rep. 2, doi:10.1038/srep00394 (2012). [2] J. Mater. Chem., 22 (2012) 13423. [3]
ACS Nano 6 (2012) 3499. [4] ACS Nano 5 (2011) 8391. [5] Nano Lett. 8 (2008) 345. [6]
Nat. Nanotechnol. 5 (2010) 286. [7] Sci. Rep. 1, doi:10.1038/srep00046 (2011). [8] J. Am.
Chem. Soc. 133 (2011) 9124. [9] Sci. Rep. 2, doi: 10.1038/srep00501 (2012).

タンパク質認識単分子膜の構造と分子認識への動的効果

佐藤 縁

産業技術総合研究所バイオメディカル研究部門

1. はじめに

電極基板や固体基板表面を機能性有機分子薄膜で修飾し、基板と修飾層を分子認識の場 として機能させる人工修飾薄膜に関する研究が活発に行われている。生体分子のみを実サ ンプルから効率よく取得、感度よく検出するためには、1)認識部位(膜側) - 生体分子 (検出側)間の相互作用をできるだけ増強させる、2)夾雑物質による非特異的な吸着の 徹底的な排除を試みる、3)認識基板の構造と材質を検討する、検出手法そのものの検討、 などを行っていく必要がある。効果的な生体分子認識系の構築のために、認識部位を有す る分子と、基板への非特異的な吸着を抑制する分子とで「ハイブリッド膜」を構築し、こ れが生体分子の検出に大変有効であることを実験的に確認してきた。

モデルとして植物レクチンコンカナバリンA(Con A)を用いて、高感度検出にふさわしい ハイブリッド膜構造を詳細に検討した。その後、実際に疾病マーカー候補分子として期待さ れているレクチンの一種である、ガレクチン類の高感度・高選択的検出についても検討を行 った。しかし、免疫反応を用いずにレクチンの検出を行う場合、ハイブリッド膜の採用、非 特異吸着抑制の効率的な利用等、いろいろと工夫しても、それでもなお検出限界・検出感度 の問題が懸念される。糖とレクチンの弱い相互作用は、電気化学活性基を糖の周りに配置す ることで膜全体を電気化学的に変化させた場合に、増強されることを新規に確認した。この 結果が起こる要因について電気化学 SPR(表面プラズモン共鳴法)と電気化学 QCM(水晶振 動子マイクロバランス法)によりレクチン認識の高感度化について検討した結果を報告する。

また、非特異吸着抑制分子として設計、合成して用いている、短鎖のトリエチレングリ コールーアルカンチオール類による単分子膜が、大きな分子の透過は抑制するが小さい分 子(分子量100以下程度)は膜内を自由に透過できるものであることを確認した。この機能 を生かして電気化学免疫測定法に応用した結果も合わせて報告する。

2. レクチン認識ハイブリッド膜の作製と高感度認識

糖-レクチン(タンパク質)の相互作用は、抗原-抗体の相互作用などと比較すると大変弱 いため(解離定数KD:糖-レクチン(10⁻⁴~10⁻⁵程度)、抗原-抗体の場合(10⁻⁹程度))、基板上 での検出は難しい場合が多い。このような弱い相互作用の系でも、将来的には基板上で安定 に感度よく検出できる系を構築するため、分子認識部位の膜内での効率的な配置に関して詳 細に検討した。

まず、分子認識部位の基板上での効率的な配置について検討を行った。認識分子としてマルトシドードデカンチオール分子(MalCl2SH)、基板へのタンパク質の非特異的な吸着を抑制する分子として、水酸基末端チオールを採用した。金基板上にマルトシド-ドデカンチオール分子 100%で構築した単分子膜と比較して、水酸基末端チオールを混合し、ハイブリッド膜とした場合、水酸基末端チオール分子の割合が増加するにつれてレクチン(Con A)の認識量(吸着量)が増加していることが確認できた。仕込み比において 10%、実測比 29%のマルトシド分子のとき、Con A分子の吸着量は最高値(約1.8 x 10⁸分子/cm²)を示した。

マルトシドの割合を約 10%(仕込み比)で固定し、水酸基末端チオール分子(スペーサー 分子)の高さを変えた実験を合わせて行ったところ、認識部位(糖鎖)の部分とスペーサ末 端(水酸基)部分の差がある程度大きい方がタンパク質(レクチン)の認識に適しているこ とを確認した。結果としてアルキル鎖長単位(CH₂)_nが6以上の差になるときに一番効率のよ い検出ができる表面が 形成されるが、これは Con A-糖鎖間の結合が1 対1結合から、2価結合 に変わるためであるこ とも確認した。

図 1. 水酸基末端チオール (スペーサー分子) とレクチン認識分子 (糖鎖)

The number of Con A adsorption

との混合膜上でのレクチン (Con A) 認識のモデル図。

3. 非特異吸着抑制分子 TEG-アルカンチオール分子 の新たな利用

TEG-アルカンチオール類(TEGCnSH, Cn=(CH2)n; n=2,4,6,8,11)は、リジッドな膜を構成するための 直鎖アルカンチオール部分と、タンパク質などの分 子が基板に吸着するのを防ぐ、柔軟性が高く親水性 の高い部分(トリエチレングリコール基)の、相反 する性質を併せ持つ分子である。金基板表面に、レ プチン(分子量16000)を検出するための抗体を固 定するためのカルボキシル基末端アルカンチオー ルと TEGCnSH 類とでナノ構造薄膜を構築した。次い でカルボキシル基部分に抗レプチン抗体を固定し レプチン認識表面を作製、レプチンを抗体固定基板表

ソフト界面で修飾した電極

図2. 糖尿病マーカーの測定を可能にした電気化学的免疫測定用チップ

面で認識した後、酵素(アルカリフォスファターゼ)で標識した二次抗体を反応させた。基 質 PAPP(p-アミノフェニルリン酸)を加え、酵素反応により PAP(p-アミノフェノール)が 生じる。生成物は TEGCnSH 分子膜を透過し、酸化反応を受けることができるので、レプチン の量を電気化学的に追跡可能となる。本手法により、レプチンを pg/ml レベルで検出するこ とに成功した。

4. 分子認識薄膜への電気化学活性基の導入とタンパク質高感度検出

水酸基末端アルカンチオールあるいは TEG-アルカンチオール類などのスペーサ分子を、電気化学活性基を有する分子に変えて、糖鎖分子とともにハイブリッド膜を構築し、レクチンの認識を試みた。フェロセン基を末端に有するアルカンチオールをスペーサとして用い、糖鎖分子とで各種ハイブリッド膜を作製、フェロセン基がニュートラルな状態である場合と比較して、フェロセンが酸化状態になる電位(+0.5V vs Ag/AgC1)に基板電位を保持すると、マルトシドの認識が数倍から十数倍に高まった。電位を与えることで膜構造が変化し、応答検出しやすくなったものと考えられ、さらに詳細な機構を検討している。

- 1) K. Yoshioka, Y. Sato, M. Tanaka, T. Murakami, and and O. Niwa, Anal. Sci., 26, 33-37 (2010).
- 2) K. Yoshioka, Y. Sato, T. Murakami, M. Tanaka, and and O. Niwa, Anal. Chem., 82, 1175-1178 (2010).
- 3) T. Nishimura, Y. Sato, M. Tanaka, R. Kurita, K. Nakamoto and O. Niwa, *Anal. Sci.*, **27**, 465-469 (*Cover & Hot article*) (2011).
- 4) Y. Sato, K. Yoshioka, T. Murakami, S. Yoshimoto and O. Niwa, Langmuir, 28, 1846-1851 (2012).

FUNCTIONAL AND NANOSTRUCTURED CONDUCTING POLYMERS FOR CELL ENGINEERING

Hsiao-hua Yu

Yu Initiative Research Unit, RIKEN Advanced Science Institute 2-1 Hirosawa, Wako, Saitama 351-0198, JAPAN Email: bruceyu@riken.jp

Interfacing materials with cells through specific ligand/receptor interactions, matching mechanical properties, and matching nanostructures are very critical in biomedical technologies. Recently, conducting polymers have emerged for various related applications, ranging from biosensing to medical bionics. Many features of conducting polymers, including simplicity for nanostructure fabrication, tailored functional groups for bioconjugation, intrinsic electrical conductivity, and softer mechanical characteristics than metals, provide advantages as materials for cell-related diagnostic and therapeutic platforms as well as controlled cell engineering. The research of Yu Initiative Research Unit focus on the development of independent and multidisciplinary research program though the triangle of chemistry, electronic materials, and biomedical/biological investigations based on molecular and nano-assembled building blocks of conducting polymers. The organic conductive biomaterials we developed, unlike traditional polymers or inorganic metals/ceramics, provides a unique toolkit which integrates electrical control with all the known molecular and biomolecular building blocks required for bioengineering. Ultimately, it would provide a platform which can combine biochemical control, spatial arrangement, and matching mechanical characteristics with electrical stimulation or signaling.

Nanostructures of conjugated materials have become one of the most important research topics in the research because of the nanostructure's influence on the materials performance. Up to date, most research focus on the nanostructures and material properties of unfunctionalized π -conjugated materials and limited studies on nanostructures of functionalized ones. Because of the molecular advantageous features of dioxythiophenes, we are particularly interested to develop general approaches for their polymeric nanostructures with various functional groups. We first enlarged the dioxythiophene-based monomer library with a variety of molecular building blocks. The monomers can be classified as two groups. Material modulation monomers are synthesized to manipulate the material properties, ranging from highly hydrophobic to highly hydrophilic, and create desired assemblies. The side chains included alkyl groups, perfluorinated groups, oligoethylene glycol groups, and especially zwitterionic phosphorylcholine and betain groups. Our research represents the first example in linking these biomimetic zwitterionic side-chains in conjugated materials to create enzyme/cell resistant conductive surface. The other group of monomers is the ones provide target function. For the biomaterials research, they provide the site for bioconjugation (-COOH, -NH₂, -maleimide, -N₃). The library now consists of >50 monomers with different linkers and functional groups. Mixing the monomers from two groups, we would achieve π -conjugated materials with desired functions and material characteristics. For example, we combined the maleimide- and phophorylcholine-functionalized dioxythiophenes to construct conductive membranes. Upon bioconjugation with neuron-targeting IKVAV ligand, the membrane selective binds PC12 cells with zero binding to the control NIH3T3 cells.

Moreover, we also developed several approaches on the efficient syntheses of π -conjugated material nanostructures. The main goal is to develop a universal approach to create these nanostructures from various functionalized monomers. We successfully built nanocapsules,¹ nanodots,² nanowire networks,³ nanotubes,⁴ and nanorod arrays⁵ with a variety of monomers. These materials allow us to differentiate the origins of the material functions. It is important to utilize the molecular and nanostructural design principles and synthetic approaches we developed to investigate the plausible applications of these functional π -conjugated nanomaterials. One specific area we are working on is efficient capturing of cells, particular the cells with diagnostic and therapeutic applications. For example, circulating tumor cells is an important index for cancer metathesis. However, their extremely low concentration has hampered the study and use for diagnostic routinely. Using the carboxylic acid group functionalized conjugated polymer nanodots previously described in Figure 6, we have demonstrated enhanced tumor cell capturing by the synergistic effect of nanostructures and capturing agents as shown in Figure 8. Antibody grafted nanodots displayed 4~5 times capturing efficiency comparing to smooth films.

In summary, we synthesized a variety of monomers which provide the target functions and modulate material properties. We also developed several methodologies to control the nano-assembly process during polymerization. With the ability to control molecular structure and nanostructures, we demonstrated the applications of these materials in cell capturing and engineering.

References

- [1] Luo, S.-C.; Wan, A. C. A.; Han, Y.; Yu, H.-h.; Ying, J. Y. Small **2008**, *4*, 2051.
- [2] Sekine, J.; Luo, S.-C.; Wang, S.; Zhu, B.; Tseng, H.R.; Yu, H.-h. Adv. Mater. 2011, 23, 4788-4792.
- [3] Luo, S.-C.; Zhu, B.; Nakao, A.; Nakatomi, R.; Yu, H.-h. *Adv. Eng. Mater. (Advanced Biomaterials)* **2011**, *13*, B423-B427.
- [4] Luo, S.-C.; Sekine, J.; Zhu, B.; Zhao, H.; Nakao, A.; Yu, H.-h. ACS Nano 2012, 6, 3018-3026.
- [5] Lin, H.-A.; Luo, S.-C.; Zhu, B.; Yamashita, Y.; Yu, H.-h. submitted.

光分解性ゲルを利用したタンパク質の機能制御

加藤 大 東京大学大学院薬学系研究科 kato@cnbi.t.u-tokyo.ac.jp

1. 緒論

タンパク質は大きさが数ナノメート ルの物質であり、選択性に優れ、生体親 和性が高く、環境負荷が低く、反応の効 率が良いなど優れた性質を有する。その ため、酵素アッセイ、バイオセンサー、 ELISA 等の分析化学分野やバイオレメ デーションの環境浄化などに加えて、最 近では、バイオ医薬品として抗体などの タンパク質製剤が、売り上げを急速に伸

ばし注目を集めている。しかし一般的に、タンパク質には、変性・失活し易く、また 機能を制御する汎用的な手法がないという問題が残されていた。

我々は、光分解性ゲルの中にタンパク質を包含することで不活化し、光照射によっ てゲルを崩壊させ、タンパク質を放出することで機能化させるタンパク質の機能制御 法を開発し、PARCEL(Protein Activation and Release from Cage by External Light)法と名 付けた(図1)。PARCEL 法は、様々なタンパク質に対し、その機能を光によって非 侵襲的に時空間制御することが可能であると、いう特徴を有している。

2. 光分解性ゲルによるタンパク質の機能制御

光刺激によってゲルを崩壊させるために、まず始めに、ゲルの網目構造に中に光 照射によって開裂する構造を有する新しいモノマー分子を設計、合成した。本モノマ ーとアクリルアミドの混合液を重合することで、ゲルが形成され、その重合時にタン パク質を添加することで、タンパク質を内包したゲルが形成される。その後、光照射 による2-ニトロベンジル基の開裂によって網目構造が壊れるため、内包されていた タンパク質が放出され、機能を発現すると考えた[1,2]。光開裂基である2-ニトロベン

図2 光分解性ゲルを用いた酵素機能制御

a) 光開裂基の影響、b) 5種類のタンパク質の放出制御、c) 光の照射量と放出量の関係

ジル基の影響を調べるために、2種類のトリプシン内包ゲルを調製し、その一方には 光開裂基を導入し、もう一方のゲルには光開裂基を導入しなかった。それぞれのゲル の光照射前後(UV=365 nm、10秒間)でのトリプシン活性を比較した結果、照射前は 両者のゲルとも殆どトリプシン活性を示さなかったのに対し、光照射後は光開裂基を 有するゲルのみでトリプシン活性の大幅な上昇が確認された(図 2a)。したがってゲ ルの網目構造内に2-ニトロベンジル基を導入することで、光照射によりゲルの網目 構造が崩壊し、内包していたタンパク質が放出され、機能させることに成功した。

本ゲルは網目構造を利用してタンパク質を内包していることから、物性の異なった 様々なタンパク質を内包し、光によって放出し、機能を発現させることができると考 えられた。そこで分子量の異なるタンパク質の光による機能制御を試みた。その結果、 図 2b に示した5種類のタンパク質を始め、これまでに試みた全てのタンパク質の機 能制御に成功している。本ゲルは、タンパク質とゲルの網目構造との間には化学結合 が不要であり、ゲルが形成している網目構造の開裂によってタンパク質が機能を発現 しているためと考えられる。さらに照射する光の強度を 25-200mJ の範囲で変化させ た所、照射強度が増加するにしたがって放出されるタンパク質の量が増加したことか ら(図 2 c)、光の強度を調節することで放出量の調節が可能であると考えられる。ま たトリプシンは、本光分解性ゲルに内包されることで安定性が向上した。

3. ナノ粒子化光分解性ゲル

これまでの検討で、いろいろな物質をゲルに内包し、光刺激によって放出することに成功しており、本ゲルをナノ粒子に成型することができれば、医薬品の送達技術や細胞内タンパク質の機能制御に利用できると考えた。これまでの光分解性ゲルは、反

二硫酸アンモニウム(APS)濃度を変えることで、70nmから200nmの範囲で粒子径の揃ったナノ粒子が調製された。ナノ粒子内に内包されるタンパク質の量は、調製時に添加したタンパク質の量に比例するため、ナノ粒子に内包されるタンパク質の数量も簡単に調節することができる。

ナノ粒子化した光分解性ゲルの光照射前後(20秒)の変化を電子顕微鏡及び動的 光散乱(DLS)によって測定した結果、光照射によってナノ粒子は分解し、より小さ

な断片に崩壊することが確認された(図3)。このナノ粒子の崩壊によって内包して いたタンパク質が外部に放出されたかを確 認するため、トリプシン内包ナノ粒子を調製 し、光照射後に放出されたトリプシン活性を 測定した。その結果、照射前にはほとんど活 性が見られなかったのに対して、照射後は強 い活性が検出された。これまでに3種類のタ ンパク質(トリプシン、カスペース、カゼイ ン)の内包を試み、いずれのタンパク質につ いても内包したナノ粒子を調製し、光照射に よる放出に成功した。

最後に、調製したタンパク質内包ナノ粒 子を細胞に導入し、細胞内でナノ粒子からの タンパク質の放出を光によって制御した。ナ ノ粒子には、細胞死に関与するカスペースを

内包させ、細胞内に導入した。細胞は、カス ペース内包ナノ粒子を導入しただけでは変化 を示さず、またナノ粒子を導入していない細

図4 細胞局所で放出した カスペースの影響

胞に対してナノ粒子が崩壊する条件で光照射を行っても変化が見られなかった。一方、 カスペース内包ナノ粒子を導入した細胞に光を照射すると全てが細胞死を引き起こ した。したがって本ナノ粒子を用いることで、細胞内でタンパク質が機能を発現する タイミングの制御が可能であることが示唆された。さらに光は集光することで照射領 域を数マイクロメートルの領域に限定することが可能なため、細胞内の特定の局所を 光照射し、その局所でカスペースの放出を試みた。細胞局所で放出されたカスペース は、ラメリポディアの収縮など細胞死に至る細胞の変化が光の照射領域周辺から引き 起こした。

本ナノ粒子は、光照射を受けるまでは、内包物を安定に保管し、光照射によって崩 壊することで、内包物を放出することから、タンパク質が機能を回復(発現)する"場 所"、"タイミング"、"強度"を光刺激によって高精度に制御することができた。

4. 参考文献

[1] S. Murayama, M. Kato, Anal. Chem. 82, 2186-2191 (2010)

[2] S. Murayama, F. Ishizuka, K. Takagi, H. Inoda, A. Sano, T. Santa, M. Kato, Anal. Chem. 84, 1374-1379 (2012).

[3] S. Murayama, B. Su, K. Okabe, A. Kishimura, K. Osada, M. Miura, T. Funatsu, K. Kataoka, M. Kato, Chem. Comm. in press.

「バイオトランジスタ」のための界面設計戦略

東京医科歯科大学 〇松元亮・合田達郎・前田康弘・宮原裕二

Strategy and surface design for biotransistors

(Tokyo Medical and Dental Univ.) OMatsumoto, Akira; Goda Tatsuro; Maeda Yasuhiro; Miyahara, Yuji

Abstract: A field effect transistor (FET) represents a label-free molecular detection platform, in which intrinsic molecular charges immobilized on the gate surface can directly be transduced into electrical signals. Molecular events of interest involving charge density changes can be detected as a mode of modified characteristics of the FET synchronized with electrostatic interactions between the intrinsic molecular charges and the thin-insulator-segregated silicon electrons. The principle has been applied to many types of label-free biosensors. We provide an overview of our recent progress in the field and some aspects of new approaches to broaden the extent of the application.

Keywords: Field Effect Transistor; Sialic Acid; Bornic Acid; Debye Length; Smart Gel

はじめに

我々は、電界効果トランジスタ(Field Effect Transistor: FET)原理に立脚した種々の生体 分子検出法の開発に取り組んでいる。FET法とは、薄い絶縁膜上に捉えた分子の固有電荷 をトランジスタ特性変化と同期させて検出する全くの非侵襲・非標識計測法であり、リ アルタイム計測であること、レーザーや光学系が不要なため安価で小型化に有利である こと、半導体加工技術による高密度・超並列化が容易に行える点など、ハイスループッ トシステム化において求められる主要要件を潜在的に網羅したユニークな検出法として 近年注目されている。^{1,2}

ラベルフリーな細胞診断を指向した糖鎖検出トランジスタ

糖鎖は細胞間相互作用に深く関わり、その構造は、発生や分化などの正常な細胞現象か ら疾病に至るまで「細胞の状態」と同期した変化を見せることから、しばしば「細胞の 顔」とも形容される。なかでもシアル酸は、糖鎖中に最も高頻度かつ糖鎖末端に多く存 在する分子であり、その密度や分布は、細胞の疾病(癌、転移、糖尿病、自己免疫病)、 発生、分化など、様々な細胞現象と関係している。³シアル酸分子を特異的に認識するフ ェニルボロン酸化合物⁴をFETゲート表面に固定化した「シアル酸認識トランジスタ」を 構築し、ラベルフリーで従来法よりも簡便かつ非侵襲的な評価の行える細胞診断デバイ スの創出に取り組んだ。金スパッタ薄膜基板を作成し、ここへ 10-carboxy-1-decanethiol による自己組織化単分子膜(SAM)を形成し、この表面に 3-acrylamidophenylboronic acid を導入したものをFETエクステンドゲートとして用いた。形成した電極表面のSAM膜お よびフェニルボロン酸分子層の密度、膜厚、表面モーフォロジーの評価を、それぞれ水 晶振動子微量天秤法 (QCM)、エリプソメトリー、SEM観察により行った。^{5,6}作成したゲ ート上に種々の単糖、ウサギ赤血球(未処理およびシアリダーゼ処理)、セルストレイナ ーにより濾過・分散させた肺組織(正常および癌細胞)などを種々の濃度で添加し、そ の際に生ずるゲートしきい値電圧(V_T)変化をリアルタイムFET計測装置により観測し た。赤血球表面のシアル酸発現量変化はI型糖尿病との関連が報告されており、簡便に行

える赤血球表面のシアル酸定量は糖尿病診断の目的においても重要である。検討の結果、 あらかじめ正常な細胞についての濃度- V_T プロファイルが得られれば、以後、既知濃度の 赤血球をゲート上に播種するだけで、そのシアル酸発現量がリアルタイムに求められる ことが確認された。⁶肺組織に対する評価においても同様に、癌細胞表面ではシアル酸発 現が亢進するため、癌転移度が濃度- V_T プロファイルから求められることを明らかとし た。⁷

デバイ長の制約を受けない FET 計測のための動的ソフト界面の活用

FET法の最大の弱点は電気二重層(デバイ長)により規定される検出距離限界であり、 これがタンパクや長鎖DNAの検出を難しくしている。これを克服する新たな「信号伝達素 子」として「スマートゲル」と呼ばれる刺激応答性の高分子ゲルを用いた動的ナノ界面 を開発し、その動作機序について実験、理論の両面から詳細を明らかとした。この中で、 スマートゲルの含水率変化に同期して起こるゲート界面近傍での誘電率変化が信号変換 機序として作用することを見いだした。8これにより、従来法では原理的に不可能であっ た「デバイ長フリー」な分子検出、電気的に中性な物質に対しても有効な(FETに基づく) 分子検出法の開発に成功した。また、この原理に基づくと、FET法は、「荷電変化」と「誘 電率変化」に対する二重応答性を呈するが、これを活用した新たなケモメカニカル検出 システムをデザイン・実証した。すなわち、FETゲート上にカルシウム応答性のゲル薄膜 を導入し、カルシウムに応答してゲルが体積変化する際の各要素反応(カルシウムイオ ンの拡散、ゲル内への水の流入)の動力学を、FETによって独立に可視化できることを明 らかとした。?さらには、ゲート上に導入するゲルの物理的な構造を制御することによっ ても、高分子ゲルの応答動力学に基づき、得られる電気信号のパターンを様々にデザイ ンできることを明らかとした。「スマートゲル」には、グルコースやカルシウムなどの低 分子ターゲットにとどまらず、抗原抗体反応、バイオマーカ、相補的なDNAなどを認識す るものが多数報告されており、これらのターゲットに対しても同様の方法が適用可能と 考えられる。

参考文献

- 1. Bergveld, P. Sens. IEEE Trans. Biomed. Eng. 1970, 17, 70-71.
- 2. Sakata, T. Angew. Chem. Int. Ed. 2008, 24, 118-120.
- 3. Hakomori, S. Cancer Res. 1985, 45, 2405-2414.
- 4. Otsuka, H., et al. J. Am. Chem. Soc. 2003, 125, 3493-3502.
- 5. Matsumoto, A. et al. J. Solid State Chem. 2009 13, 165-170.
- 6. Matsumoto, A. et al. J. Am. Chem. Soc. 2009, 131, 12022-12023.
- 7. Matsumoto, A. et al. Angew. Chem. Int. Ed. 2010, 49, 5494-5497.
- 8. Matsumoto, A. et al. Adv. Mater. 2009, 21, 4372-4378.
- 9. Matsumoto, A. et al. Chem. Comm. 2009, 37, 5609-5611.
- 10. Maeda, Y. et al. Nanoscale. Res. Lett. 2012, 7, 108.

バイオマテリアル表面の分子運動性制御による細胞機能の調節

東京医科歯科大学 JST-CREST 由井 伸彦

生体内埋込型の医療デバイスには、生体防御を担当する炎症細胞群や液性因子が出現する環境下 で生体と共存する表面の構築が不可欠である。生体には血液凝固反応や炎症反応などがあり、更に 液性因子の誘導による細胞分化・増殖過程などを経て正常に戻る恒常機能が備わっている為、医療 デバイスを生体内へ埋植すると、こうした一連の生体防御系が発動して最終的にはデバイスの拒絶 へ至る異物反応が生起する。このことから、相界面を単一的に物理化学から取り扱う従来からの材 料表面構築・創製技術が生体との界面設計においては無力であることがわかる。すなわち、生体応 答を制御する生体-材料・界面について全篇に亘るシナリオを描く設計概念が欠如しており、この ことがナノバイオ機能設計を推進する研究者に戸惑いを与える結果となっていた。

一方、細胞における情報伝達系は高度に階層的かつ相補的な素過程が巧妙に仕組まれていて、構成分間に働いている分子間力の自在な調節機構と直結している。このように細胞そのものが非共有結合を巧みに活かした構造の動的特性をもとにして機能発現を調節していることから、非共有結合からなる超分子集合体が潜在的に有している動的特性は生体との界面設計の上で重要な鍵になると考えた。そこで、生体の動的特性に対応できるポテンシャルを有する動的バイオマテリアルの設計を1993年に開始し、以降20年近くに亘ってポリロタキサンに代表される高分子系超分子集合体の動的特性に基づいたバイオマテリアル機能の創成を研究してきた。

ポリロタキサンの特徴は、線状高分子鎖が多数の環状分子空洞部を貫通しているインターロック ト構造(機械的連結)にある。環状分子と線状高分子鎖とのあいだに分子間力が働かなければ、環 状分子は線状高分子鎖に沿って自由に回転・スライドなどの運動が可能である。これまでに、ポリ ロタキサンに導入した糖鎖リガンドとタンパク質レセプターとの結合定数が10³倍以上増大し、分子 可動性を有するポリロタキサン骨格が多価相互作用の亢進に効果的であることを見いだした。一方、 ポリロタキサン末端のストッパーが外れれば、環状分子が線状高分子鎖から脱離してインターロッ クト構造そのものが消失するので、これを利用して細胞内分解に伴って核酸を安全かつ効果的に核 内あるいは細胞質内に送達するキャリアー設計の有効性も実証してきた。

こうした背景のもとに 2007 年より実施している JST-CREST 研究プロジェクトでは、ナノメーター オーダーの分子間力に基づいてバイオマテリアル表面の分子運動を任意に操作することにより、生 体分子や細胞を取り巻く水分子・細胞情報伝達を制御するリガンド分子・細胞膜タンパク質・周囲 組織に配慮し、生体との界面における自然治癒過程を理想的に誘導することを目指している。こう した分子運動に着目した表面構築は未踏な課題であり、従来のバイオマテリアルに関する学問の missing part として新しい界面設計指針を実証できるものと考えている。

具体的には、著者らは分子運動性を制御したバイオマテリアル表面のプラットフォームとして、 α-シクロデキストリンとポリエチレングリコールとからなるポリロタキサンを一成分とするトリブ ロック共重合体を合成し、そのキャスト表面における分子運動性と生体応答全般(接触初期の血漿 タンパク質吸着、吸着タンパク質の細胞結合部位の表面露出、表面における細胞接着挙動の解析、 細胞の接着斑形成と機能、周囲コラーゲン組織との結合、埋植による炎症反応、細胞の分化誘導な ど)との関係を明らかにしつつある。吸着タンパク質を介した非特異的な細胞接着のみならず RGD-インテグリン結合を介した特異的な細胞接着においても、材料の表面運動性の強い関与が示唆され ている。当日は、こうした最近の成果を中心に表面運動性による生体応答調節の可能性について議 論する。

謝辞

ここで紹介する内容のいくつかは、東京大学・石原一彦教授、井上祐貴助教、東京医科歯科大学・ 岸田晶夫教授、徐 知勲助教、国立循環器病研究センター研究所・山岡哲二部長、柿木佐知朗博士 との共同研究による成果であり、深謝します。

参考文献

- N. Yui (ed), Supramolecular Design for Biological Applications, CRC Press, Boca Raton USA, 2002.
- N. Yui, K. Ishihara, A. Kishida, T. Yamaoka (eds.), Nanobio-Interfaces in Relation to Molecular Mobility, JAIST Press, Ishikawa, 2010.
- 3. T. Ooya, M. Eguchi, N. Yui, J. Am. Chem. Soc. 125, 13016 (2003).
- T. Ooya, H. S. Choi, A. Yamashita, N. Yui, Y. Sugaya, A. Kano, A. Maruyama, H. Akita, K. Kogure, H. Harashima, *J. Am. Chem. Soc.* 128, 3852 (2006).
- 5. A. Yamashita, N. Yui, T. Ooya, A. Kano, A. Maruyama, H. Akita, K. Kogure, H. Harashima, *Nature Protocol* 1, 2861 (2006).
- 6. N. Yui, T. Ooya, Chem. Eur. J. 12, 6730 (2006).
- 7. N. Yui, R. Katoono, A. Yamashita, Adv. Polym. Sci. 222, 55 (2009).
- Y. Yamada, T. Nomura, H. Harashima, A. Yamashita, R. Katoono, N. Yui, *Bio. Pharm. Bull.* 33, 1218 (2010).
- 9. H. Hyun, N. Yui, Macromol. Rapid Commun. 32, 326 (2011).
- 10. H. Hyun, N. Yui, Macromol. Biosci. 11, 765 (2011).
- 11. T. Ehashi, H. Hyun, N. Yui, Macromol. Res. 19, 495 (2011).
- N. Yui, in: Supramolecular Polymer Chemistry (A. Harada, ed.), Wiley-VCH, Weinheim, 2012, p. 195.
- 13. Y. Inoue, L. Ye, K. Ishihara, N. Yui, Colloid Surf. B: Biointerface 89, 223 (2012).
- 14. K. Yamada, R. Katoono, N. Yui, Polym. J. 44, 286 (2012).
- Y. Yamada, M. Hashida, T. Nomura, H. Harashima, Y. Yamasaki, K. Kataoka, A. Yamashita, R. Katoono, N. Yui, *ChemPhysChem* 13, 1161 (2012).
- 16. Y. Yamada, T. Nomura, H. Harashima, A. Yamashita, N. Yui, *Biomaterials* 33, in press (2012).
- 17. J. H. Seo, S. Kakinoki, Y. Inoue, T. Yamaoka, K. Ishihara, N. Yui, *Soft Matter* 8, 5477 (2012).
- 18. 徐 知勲、由井伸彦、化学工業 63, 169 (2012).
- 19. J. H. Seo, N. Yui, Adv. Sci. Tech. 78, in press (2012).

生体適合高分子表面の力学的計測

東京理科大学理学部応用化学科 大塚英典

1. 緒言

原子間力顕微鏡(AFM)は試料表面の弾性率を測定するツールとして有用であるため,高分子や生体分子のような弾性的性質を持つ試料の観察ツールとして広く用いられるようになっている。AFMの空間分解能は原子オーダー,力の検出精度はピコニュートンのオーダーであり,それゆえ AFMは,高分子や生体分子のようにナノメートルスケールでヤング率の分布がある試料の力学物性を測るのに非常に適している。

さらに AFM は、10nm 程度の先端曲率半径を有する探針によって試料表面を二次元走査すること ができるため,探針-試料間に働く全ての分子間相互作用を反映した力が観測され、さらに探針表 面を化学修飾することで表面官能基に働く分子間相互作用やタンパク質間相互作用といった力を 直接測定できるようになった。

とりわけ,生体膜環境での固-液界面における現象の分子レベルの理解のために,コロイドプロ ーブ原子間力顕微鏡を用いた表面間力測定が検討されている。本研究では,固体表面間の相互作 用の距離依存性(相互作用ポテンシャル)を,直接測定する手法について検討を行った。本測定 で得られる相互作用曲線(表面力曲線)は,固-液界面からバルクへの特性変化が空間的に反映 されるために,固-液界面の特性を項目別に評価可能である。たとえば,立体力から高分子の吸 着状態や分子の空間的拡がり・硬さ,摩擦力から膨潤高分子鎖の粘弾性,などをそれぞれ評価で きる。このような特徴は,界面での生体分子反応をより詳細に解析できることを示唆している。

そこで、タンパク質の吸着を抑制するハイドロ ゲルを作成し、そのゲルが持つ表面物性に焦点 を当て、そのAFMによる解析と生体適合性の評 価を行った。また、高分子末端に存在する糖鎖 とレクチンの相互作用モデルを採用し、糖鎖密 度や分岐構造、高分子鎖長の違いが特異的糖鎖 一タンパク質相互作用へ与える影響を、AFMに よる吸着力測定 (Fig. 1)、表面プラズモン共鳴 装置 (SPR)による結合定数算出から評価するこ とを検討した。

Fig. 1. Schematic illustration of colloidal probe method for AFM.

2. 実験方法

2-1. ゲルの調整

イエロールーム内で光反応性官能基を有するマクロモノマー(3arm20k, 4arm5k, 4arm20k, 8arm40k) のトルエン1%溶液を PLL コートガラスにスピンコートした。この基盤に UV 光(10mW/cm²)を照射 し、ゲル化を行った。

2-2. フリクションフォース測定

フリクションフォース測定は、鋭い探針を有するカンチレバープローブを試料表面に接触させ、 そのたわみとねじれを光てこ機構によって検出した。AFMには E-sweep(SII 社)を用いた。カンチ レバーは 0.1N/m のバネ定数をもつ窒化シリコン製を用いた。作製したサンプル基盤を水溶液に浸 漬し、24h 後 AFM の液中用ステージに固定し、測定を開始した。初期触圧を 1.25nN になるように 基盤表面にアプローチし、フリクションフォース測定を行った。測定条件は左右に 5 µ m 走査し、 その操作速度は 5 µ m/sec で行った。

2-3. フォースカーブ測定

顕微鏡観察下、エポキシ樹脂を塗布した V 字型カンチレバーの先端に銅線で補足した球状粒子を 固定してコロイドプローブとした。この AFM カンチレバーのバネ定数は cleveland 法を用いて決 定した。このコロイドプローブを AFM(S-image)の液中セルに固定し,液中ステージに固定したサ ンプル基板上でフォースカーブを測定した。

2-4. 糖鎖-レクチン分子間相互作用の解析

Lactose に特異性を有するヒマ豆レクチン(RCA₁₂₀)を化学結合で基板に固定化し、微量タンパク質 検出法によって定量的に固定化の確認を行った。また、ポリオキシエチレン(PEO)を両末端に有す るトリブロック共重合体 pluronic (L81:PEO(3) -PPO(43) -PEO(3), P84:PEO(19) -PPO(39) -PEO(19), F88:PEO(103) -PPO(43) -PEO(103))の PEO 鎖末端に Lactose 修飾を行い、得られた Lac-pluronic を 1-octanethiol を介在してカンチレバーに固定化し probe とした。さらに Lac-pluronic の糖鎖密 度を変えて固定化し、Lactose 固定化密度(0~100 %)の異なる probe を作製した (Fig. 1)。基板 上 RCA₁₂₀ と probe 上 Lactose 間での相互作用力(吸着力)の測定は生理条件環境下 (pH:7.8・リン酸 緩衝溶液)で AFM を用いて行った。

3. 結果と考察

各種ハイドロゲル表面が持つ摩擦力を測定するために AFM のフリクションカーブ測定を行った。 その結果を Fig.2 に示す。同一表面上にレファレンスとなる PLL 表面を作製し、PLL 表面とハイ ドロゲル表面の比較からそれぞれのハイドロゲルが有する摩擦力の特徴を比較した。ハイドロゲ ルを構成するモノマーを変化させることで、ゲル表面の摩擦力は異なる挙動を示すことが確認さ れた。今回の測定では、PEG4arm5k のゲル表面が最も摩擦力が大きく、PEG3arm20k が最も小さい という結果が確認された。このことから表面の摩擦力は、ゲルを構成するマクロモノマーの分子 ・鎖長に起因していることが示唆された。つまり分子鎖長が短いものほど摩擦力は大きく、反対に 分子鎖長が長いものほど摩擦力は小さい。また 4arm20k と 8arm40k では分岐構造が異なるが、分 子鎖長は同じものである。フリクションカーブを測定すると、ほぼ同じ値を示した。それゆえ、 同じ濃度条件下においては、ハイドロゲルの摩擦力はマクロモノマーの構造ではなく、架橋点間 距離といったゲルを構成するネットワークの密度が影響することが示唆された。続いて、ハイド ロゲルが持つ弾性挙動をフォースカーブを用いて検討した。Fig.3 にそれぞれのフォースカーブ を示す。図の縦軸にはカンチレバーの反り量を、横軸は機械的な距離を示した。つまり表面が硬 いサンプルであると、反り量 100nm に対して、機械的距離は短く、表面が柔らかいサンプルであ ると機械的距離は長くなる。このフォースカーブより、機械的距離が最も短い PLL の表面は硬い といえる。続いて 4arm5k が硬く、最も柔らかい表面は 3arm20k ということが確認された。この結 果よりハイドロゲルを構成するマクロモノマーの分子鎖長が長いものほど、フォースカーブの機 械的距離が長く、柔らかい表面を持つというとことになる。さらに、分子鎖長や分岐構造の違い がハイドロゲルの硬さに影響をおよぼす状態を定量的に評価・検討を加えた。

AFM を用いて、基板上 RCA₁₂₀ と probe 上 Lactose 間の吸着力を測定した。吸着力は PEO 鎖が長い ものほど大きくなる傾向にあり、高分子構造および末端での糖鎖の自由度がタンパク質認識に影 響した結果であることが示唆された。さらに糖鎖の密度効果(面密度)を調べた結果、糖鎖-タン パク質間の特異的認識における密度効果(面密度)は空間距離依存的に存在することが分かった。 発表では糖鎖構造の違いが吸着に及ぼす影響についても紹介を行う予定である。

Fig.2. Raw friction date: (upper left) PEG 4arm5k; (upper right) PEG 4arm20k; (bottom left) PEG 8arm40k; (bottom right); PEG 3arm20k.

Fig3. Force curve between AFM probe and PEG hydrogel coated substrate.

ナノとマクロをつなぐソフト界面:

ダイナミックに操作される分子識別・センシング

物質・材料研究機構 WPI 国際ナノアーキテクトニクス研究拠点 有賀 克彦

ナノテクノロジーあるいはマイクロテクノロジーの恩恵は計り知れない。し かしながら、テクノロジーとユーザーの溝は深まり、我々は充分な理解のもと 賢く機械を使うことは出来なくなっている。例えば、はさみを使うように最先 端の技術を思う存分活用しているわけではない(機械を充分に使っているよう に見えて、その実、ただ単にボタンを押しているに過ぎない)。ユーザーフレ ンドリーな技術の開発に対して、高度な機能を得るためにいかに難しい技術を 開発するかという時代からは卒業して、いかに簡単な動作で高度な機能を達成 するかという方法論の確立を目指すべきときに来ている。

簡単な動作、日常的な動きというのは、マクロスコピックな刺激であり、特 に力学的なもの(圧縮したり、伸ばしたり、つまんだりなど)であることが多 い。したがって、マクロスコピックな力学刺激を分子・ナノレベルの機能に連 結するコンセプトの確立が必要である。この大きさの非常に異なる現象をカッ プリングできる環境がソフト界面であることに気がつく。二次元のソフト界面 では、横方向(いわゆる X-Y 平面)には目で見えるような大きさの変化を引き 起こせると同時に、それと垂直方向(Z 軸)にはナノ・分子レベルの変化を朝 待しうるからである。この環境を動的に使えば、マクロスコピックな力学刺激 をナノ・分子レベルの現象に反映することができる。これが、「ナノとマクロ をつなぐ動的界面ナノテクノロジー」である。我々は、そのパイオニア的な例 として、開閉可能な分子マシンを気-水界面上に敷き詰めた単分子膜を作製し、 その単分子膜の数十センチレベルの圧縮膨張と連動して、ナノメートルレベル の分子捕捉・放出の制御を実現している(図1)²⁾。これは、動的界面において 力学的なマクロスコピックな刺激が、分子現象に反映された例である。

このコンセプトを使って、分子認識やセンシングの常識を変えられないかと いうのが、我々のチャレンジである。分子認識の研究は、対象分子を精密に認 識するためにはレセプターの精緻な設計とその合成が必要であるというのが常 識であり、生体分子のように極めて微妙な差を見分けるためには、それ相応の 優れたレセプター分子を合成することが必要であった。それに対し、我々はキ ラルな部位を持つ構造の簡単な分子を気-水界面に並べて、それを圧縮膨張す ることによってその分子の分子ひねりを調節し、水面下からのアミノ酸の吸着 現象をコントロールした、その結果、加える圧力によってアミノ酸の D 体と L 体の吸着割合が変化することを発見した³⁾。つまり、不斉認識を行うためにそれ に対応するレセプター分子を特別に合成するのではなく。単純な構造の同一分 子をレセプターとして用いて、外的な圧力を変えるだけでアミノ酸のキラル構 造を見分けられることを実証したのである。

我々は、そのコンセプトをさらに進展し、核酸塩基のウラシルとチミンの識 別を行った。ウラシルとチミンは、塩基部分の分子構造はメチル基の有無が異 なるだけである⁴⁾。DNA や RNA はいずれもアデニンを相補的塩基として用い ていることから、これらの天然の核酸では一般にチミンとウラシルの識別がで きない。光などによる塩基構造の望まれない改変に対処しているのは、生体で は特殊な酵素である。つまり、ウラシルとチミンの識別は、水素結合対の配列 のような平面的な認識構造を考えていたのでは無理で、酵素の認識ポケットの ように立体的な認識構造をデザインする必要があるということである。これを 人工的に合成・構築することは容易ではない。我々は、図2に示すようなアー ムドシクロノナンという分子を"だいたいよい構造のレセプター分子"として 用い、この分子の構造を最適な認識構造にするため水面上に単分子膜として並 べ、膜の横方向から圧力を徐々にかけていき、その分子の形を連続的に徐々に 歪ませた。この単分子膜への下水相からのチミンやウラシルの結合の差が、IR スペクトルなどから確認され、表面張力の変化から核酸塩基(実際にはヌクレ オシドを使用)の結合定数を定量化したところ、最適条件(共存するリチウム イオンが 10 mM で表面圧力が 35 mN/m) で、この膜が 64 倍の精度でウラシ ルを選択的に識別できることがわかった。

これまで、分子認識のためのレセプター設計は、結晶構造などの安定構造を 参考に一義的に考えられてきた。しかしながら、動的に最適構造を探し出すと いう要素を加えれば、レセプター分子の潜在能力を引き出すことができるので ある。つまり、高度に設計されたレセプター分子を合成する必要は必ずもなく、 比較的簡単な構造の分子を我々の手で歪ませてやることによって性能の良いレ セプター構造を得ることができるのである。構造は無限に変えられる。可能性 は無限にある。

文献

(1) K. Ariga et al., *Chem. Sci.*, (2011), 2, 195-203. (b) K. Ariga et al., *Adv. Mater.*, (2012), 24, 158-176. (2) (a) K. Ariga et al., *J. Am. Chem. Soc.*, (2000), 122, 7835. (b) K. Ariga et al., *Langmuir*, (2005) 21, 976-981. (3) (a) T. Michinobu et al., *J. Am. Chem. Soc.*, (2006), 128, 14478-14479. (b) T. Michinobu et al., *Phys. Chem. Chem. Phys.*, (2011), 13, 4895-4900. (4) T. Mori et al., *J. Am. Chem. Soc.*, (2010), 132, 12868-12870.

図1 界面におけるマクロスコピックな動作による分子機能の制御の例

図2 界面単分子膜の力学操作によるウラシルとチミンの識別

イオン液体を用いたソフトマテリアル

(横浜国大院工) 渡邊正義

1. はじめに

イオン液体とはプラスとマイナスのイオンのみからなる塩であるにも係わらずその融点が室温以下に ある常温溶融塩である。演者らはこの液体を高分子の溶媒として用いることを提案してきた。本稿では イオン液体を溶媒に用いたゲルのユニークな特徴と最近の研究動向を紹介する。高分子ゲルの構成成分 は大きく高分子ネットワークと溶媒の二つに分けられる。高分子ネットワークが水で満たされていれば 「ハイドロゲル」、油や有機溶媒で膨潤していればそれは「リポゲル」あるいは「オルガノゲル」と呼ば れる¹⁾。ここではイオン液体というユニークな溶媒と高分子ネットワークから構成される「イオンゲル」 の多彩な特徴を示すことにより、新しいゲルの形成とその有用性を提案する。

2. 高分子のイオン液体への相溶性を利用したゲル

イオン液体は、特に蒸発しないという特徴から、有害な揮発性有機化合物を大気中に排出しない環境 に優しい液体としても注目を集めている²⁾。またイオン液体は水や有機溶媒に続く第三の液体と位置づけ られており、様々な分野で従来用いられていた液体の代替物として認知されつつある。

イオン液体は食塩水のような塩を溶かした溶液とはまったく性質が異なる。イオンのみを構成成分と するため蒸発し難く、熱安定が高く、また単位体積あたりのイオンの数が多いためイオン導電率が高い。 蒸気圧がほぼゼロで蒸発しないから燃えず、(電気)化学的に安定なイオン液体も多い。イオンの構造や 組み合わせを変えることで所望の液体物性を組み込むことができる。こういった多彩なデザイン性から しばしばイオン液体は「Designer's solvent」と呼ばれる。また、イオン液体は一見すると均一な液体だが 微少な時間/空間スケールでは局所的に秩序化したナノ構造体からできているとの指摘もあり、液体化 学的見地から見ても魅力的な素材である³⁾。これらユニークな特徴を総じて、イオン液体の登場を"液体 科学の革命"と位置づける研究者も多い。

Fig. 1 各種高分子化合物とイオン液体の組み合わせが見せる多彩な相挙動:(a)完全相溶系(PMMA)、(b)UCST(上限臨界溶液温度)型相分離(PNIPAm)、(c)LCST(下限臨界溶液温度)型相分離(PBnMA)

イオン液体は「液体」だから面白い。しかしイオン液体の優れた性質を損なわずに固体化(ゲル化) することができれば、その利用価値は大きく広がる⁴⁻⁶⁾。事実、イオン液体は各種電池用電解質、分離膜、 触媒担持膜やガス貯蔵膜などの材料化に際してはゲル状態で利用されるものも多い。固体化のための一 つの方法論として、安価で軽量な汎用合成高分子とイオン液体の組み合わせが考えられる。典型例をFig. 1(a)に示す。高分子ネットワークにポリメタクリル酸メチル(PMMA)を、溶媒に疎水性イオン液体の代表 格である1-エチル-3-メチルイミダゾリウム(ビストリフルオロメタンスルフォン)アミド ([C₂mim][NTf₂])を組み合わせたイオンゲルの写真である。この柔軟かつ透明なイオンゲルは軽量で自己 支持性を有しており成形性にも優れる。さらに室温で10⁻² S/cmという電解質溶液に匹敵する高イオン導 電率を有する新規な導電性薄膜である⁴⁾。詳細な検討の結果、本イオンゲル中のイオン伝導は、高分子ネ ットワークの動きとは独立して生起するデカップリングメカニズムで起こっていることも見出されてい る⁷⁾。

PMMAの完全相溶性を利用したもう一つのイオンゲルをFig.2 に示す。直径 120 nmのシリカ表面に PMMAをグラフト化させた微粒子はイオン液体中に安定に分散させることが可能であった。さらに興味 深いことに、このイオン液体-PMMAグラフト化シリカ微粒子コンポジットはある特定濃度以上でゲル 化し、美しく発色し、さらに濃度増大とともにその色は赤から青への変化した⁸⁾。この発色現象は構造色 と呼ばれ、鮮やかなモルフォ蝶の羽や真珠の輝きと発色原理は同じである。一般的にこれら構造色が呈 する色調はブラッグの式にスネルの法則を考慮した反射条件に従い角度依存性を持って変化する。しか し、この特殊発色体は、その色調に角度依存性がみられなかった。イオン液体を分散媒とするコロイド の面白いところは、この分散系を直接電子顕微鏡で観察できる点である。構造色を発するゲルを直接観 察したところ、その粒子配列は長距離の秩序を持たず、この配列写真から得たパワースペクトルをさら に反射スペクトルに変換した結果、実測の反射スペクトルと良好な一致をみせた⁸⁾。

一般的なコロイド分散系において分散安定性の駆動力を生む電気二重層による斥力は、イオン液体の

中では働かない⁹⁾。イオン液体という極限濃 厚イオン雰囲気において、このような電気的 効果は完全に遮蔽されてしまうからである。 しかしPMMAのようにイオン液体に相溶す る高分子をコロイド表面に修飾すると、その 排除体積効果による反発力のため、極めて良 好な分散安定性が確保されたと考えられる⁹⁾。 イオン液体の不揮発性を利用すると、液体を 含有したウェットな状態のサンプルを電子 顕微鏡で直接観察できることは、新しい電顕 観察法に発展している¹⁰⁾。このような液体と 真空技術の共存は、次世代の分析、材料化学 技術として期待される^{10,11)}。

3. イオンゲルのエネルギー変換への応用 イオン液体が高分子に相溶したゲルは、

Fig. 2 PMMA 修飾シリカ微粒子を高濃度に分散させ たコンポジットイオンゲルが発色する美しい構造色 とイオン液体(右)の外観

分子設計により、エネルギー変換系への応用が可能となる。たとえば、電池¹²⁾、燃料電池、アクチュエ ータ¹³⁾ などが挙げられる。燃料電池は、水素と酸素をエネルギー源とし、水のみを排出するクリーンな 発電装置であり、その普及に期待が高まっている¹⁴⁾。我々は、ある種のブレンステッド酸と塩基を等モル 量混ぜるだけで合成できるイオン液体(プロトン性イオン液体)に注目した¹⁵⁾。すなわち、このイオン 液体が系中を自由に動ける活性なプロトンを持つカチオンからなることに注目し、これをプロトン伝導 体に用いた燃料電池発電の実現に着手した¹⁶⁾。結果としてジエチルメチルアンモニウムトリフロオロメタ ンスルフォネート([dema][TfO]))が極めて高いイオン導電率を示すこと、さらに重要なことに、このイ オン液体が白金電極上で活性な水素酸化および酸素還元能を併せ持つことを見出した¹⁷⁾。この特徴を活か

し [dema][TfO]を高分子膜形燃料電池 に適用するため、強靱なポリイミド骨格 と組み合わせた。このマトリックスをス ルホン化しカウンターカチオンにイオ ン液体類似構造を導入することにより、 イオン液体との高い相溶性、良好なプロ トン伝導特性と力学特性の両立を実現 した (Fig.3)¹⁸⁾。このイオンゲルを用い た燃料電池は、室温から水の沸点を大幅 に超える140℃という中温条件まで、無 加湿状態で発電できることを見出し た¹⁹⁾。中温領域での燃料電池発電は貴金 属(白金)触媒量の低減や、CO被毒の 回避という側面からも技術確立の要求 は大きい。加えてこの系は水をプロトン 伝導媒体に用いておらず原理的に低温

(0℃以下)でも発電可能なことから、 作動温度範囲を大幅に拡大できる。まだ まだ課題も多いが、低温から100℃以上 の温度範囲まで無加湿状態で発電でき るプロトン伝導体がいまだ存在しない ため、燃料電池電解質としての期待が広 がる。

Fig. 3 プロトン性イオン液体([dema][TfO])とスルフォン酸化ポリイミドの構造、膜の外観、および燃料電池特性

4. LCST 型に相転移するイオンゲルの

特徴と利用 -溶媒が蒸発しない、新しいスマートゲル-

物理化学的外部刺激に応答して溶液中で溶解性を変化させる高分子は刺激応答性高分子と呼ばれ、水 溶液中の刺激応答性高分子に関しては活発に研究が進んでいる。その中でも特にポリ(N-イソプロピル アクリルアミド)(PNIPAm)は最も広く研究されている刺激応答性高分子と言って良いだろう²⁰⁾。PNIPAm は水中で室温~人間の体温付近で低温相溶-高温相分離のLCST型相分離を見せる。これを反映して PNIPAmを水で膨潤させたハイドロゲルは水中で低温膨潤-高温収縮型に体積を変化させる。PNIPAmハ イドロゲルの膨潤収縮応答はDDS、アクチュエータ、光学デバイスなど様々な応用展開が期待されてい る。このようにゲルの刺激応答性を利用し、材料自身が外部刺激を感じ(sensing)、判断(processing)した後、 行動(action)するゲルをスマートゲルと呼ぶ^{21, 22)}。このようなスマートゲルはいずれも高分子ネットワー クへの溶媒の出入りがゲルの体積変化を生み、あらかじめ設計された機能を発現する。しかし溶媒が経 時的に蒸発してしまうと機能を発揮できない。もちろん、溶媒の融点以下、沸点以上の温度でも使えな い。言い方を換えるとスマートゲルにとって機能の本質を担う溶媒の存在が、ときに最大の弱点になっ てしまう。そこで我々は液体温度領域が広く、蒸発しないイオン液体をスマートゲルの溶媒に適用した。 検討の結果、ポリベンジルメタクリレート (PBnMA)が、あたかもPNIPAm水溶液のように、[C₂mim][NTf₂] 中でLCST型に相分離することを見出した (Fig.1(c))²³⁾。LCST型相分離の本質は構造形成性溶媒和にある。 例えばPNIPAm水溶液では疎水性側鎖のイソプロピル基周辺の疎水性水和により水が秩序化し、混合のエ ントロピー変化が負となっていると考えられている。PBnMAのイオン液体溶液でも混合のエントロピー 変化が負となっているはずなので系中で溶媒あるいは高分子の構造化が起きていると推察された。この エントロピー低下効果を解くヒントとして近年、ベンゼンやトルエン、キシレンなど種々の芳香族系低 分子化合物をイオン液体と混合すると液状包摂化合物(liquid clathrate)と呼ばれる秩序構造を形成すると いう報告がある²⁴⁾。PBnMAにおいても芳香族側鎖近傍にイオン液体が秩序化して混合のエントロピーが 低下していると考えられている。最近の検討では芳香族側鎖近傍の分子設計により、相転移温度を我々 の室温域まで低下させた高分子²⁵)やイオン液体中で光に応答して相転移する高分子²⁶も見出されており、 一層の発展が期待される。

また、PBnMAを高分子ネットワークとしたイオンゲルがイオン液体中で温度に応じて不連続かつ可逆 に体積相転移する現象を見出した(Fig.4)²⁷⁾。繰り返しになるがイオン液体は蒸発せず、燃えない。有機物 としては驚異的ともいえる液体温度範囲を持つ。従来のハイドロゲルではカバーできなかった温度・圧 力条件も適用可能であることから、スマートゲルの新たな用途拡大が期待できる。ゲルの体積相転移は 1978 年、MITの田中により発見され

たゲルサイエンスの一大ブレークス ルーであり、今でも多くの研究技術 者を魅了し続けている²⁸⁾。この神秘的 な現象は高分子網目に働く浸透圧効 果で理論的に記述され、水中のイオ ン性ハイドロゲル(電荷を持った高 分子ネットワーク)によるものがよ く知られている²⁹⁾。しかし、イオン液 体(電荷を持った液体)の中で中性 PBnMA高分子網目に働く浸透圧効果 の分子論的解釈は、実はまったく未 解決な問題である。イオンゲルの科 学は純粋な基礎学術対象として眺め ても興味深い。

Fig. 4 PBnMA イオンゲルの体積相転移現象
6.おわりに

今回はイオン液体を溶媒に用いた高分子ゲルの特徴と機能に関して、相溶系、LCST型相変化系、UCST型相変化系と分けて多彩なイオンゲルの世界を紹介した。無限のデザイン性を誇るイオン液体が高分子と出会い、新たな特徴が生まれる。イオン液体を溶媒とするソフトマテリアルの世界の広がりを実感頂けたならば講演者としての役割は果たせたかなと思う。

参考文献

- 1. 吉田亮 著, "高分子ゲル", 共立出版 (2004).
- 2. N. V. Plechkova, K. R. Seddon, Chem. Soc. Rev. 37, 123 (2008).
- 3. For example, S. Shigeto, H. Hamaguchi, Chem. Phys. Lett. 427, 329 (2006).
- 4. M. A. B. H. Susan, T. Kaneko, A. Noda, M. Watanabe, J. Am. Chem. Soc. 127, 4976 (2005).
- 5. T. Ueki, M. Watanabe, Macromolecules (Review), 41, 3739 (2008).
- 6. T. Ueki, M. Watanabe, Bull. Chem. Soc. Jpn. (Accounts), 85, 33 (2012).
- 7. S. Seki, M. A. B. H. Susan, T. Kaneko, H. Tokuda, A. Noda, M. Watanabe, J. Phys. Chem. B, 109, 3886 (2005).
- 8. K. Ueno, A. Inaba, Y. Sano, M. Kondoh, M. Watanabe, Chem. Commun. 3603 (2009).
- 9. K. Ueno, M. Watanabe Langmuir (Invited Feature Article), 27, 9105 (2011).
- 10. S. Kuwabata, A. Kongkanand, D. Oyamatsu, T. Torimoto Chem. Lett. 35, 600 (2006).

11. E. F. Borra, O. Seddiki, R. Angel, D. Eisenstein, P. Hickson, K. R. Seddon, S. P. Worden *Nature* 447, 979 (2007).

- 12. 高分子学会 編, "燃料電池と高分子", 共立出版 (2005).
- 13. K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, M. Watanabe, *J. Am Chem. Soc.*, **133**, 13121 (2011).
- 14. S. Imaizumi, Y. Kato, H. Kokubo, M. Watanabe, J. Phys. Chem. B, 116, 5080 (2012).
- 15. T. L. Greaves, C. J. Drummond, Chem. Rev. 108, 206 (2008).
- 16 A. Noda, M. A. B. H. Susan, K. Kudo, S. Mitsushima, K. Hayamizu, M. Watanabe, *J. Phys. Chem. B*, **107**, 4024 (2003).
- 17. H. Nakamoto, M. Watanabe, Chem. Commun. 2539 (2007).
- 18. S.-Y. Lee, A. Ogawa, M. Kanno, H. Nakamoto, T. Yasuda, and M. Watanabe, J. Am. Chem. Soc. 132, 9764 (2010).
- 19. T. Yasuda, S.-Y. Lee, S. Nakamura, M. Watanabe, 高分子, 59, 134 (2010).
- 20. H. G. Schild Prog. Polym. Sci., 17, 163 (1992).
- 21. H. Wei, S. -X. Cheng, X. -Z. Zhang, R. -X. Zhuo, Prog. Polym. Sci. 34, 893 (2009).
- 22. L. A. Lyon, J. D. Debord, S. B. Debord, C. D. Jones, J. G. McGrath, M. J. Serpe, *J. Phys. Chem. B* 108, 19099 (2004).
- 23. T. Ueki, M. Watanabe, Langmuir, 23, 988, (2007).
- 24. J. D. Holbrey, W. M. Reichert, M. Nieuwenhuyzen, O. Sheppard, C. Hardacre, R. D. Rogers, *Chem. Commun.* 476 (2003).
- 25. K. Kodama, H. Nanashima, T. Ueki, H. Kokubo, M. Watanabe, Langmuir, 25, 3820 (2009).
- 26. T. Ueki, A. Yamaguchi, N. Ito, K. Kodama, J. Sakamoto, K. Ueno, H. Kokubo, M. Watanabe, *Langmuir*, 25, 8845 (2009).
- 27. T. Tanaka, Phys. Rev. Lett. 40, 820 (1978).
- 28. 田中豊一 著, "ゲルと生命"東京大学出版会 (2002).
- 29. For example, M. Shibayama, T. Tanaka, J. Chem. Phys. 102, 9392 (1995).

ソフト界面の振動分光法によるその場分子構造評価

魚崎浩平

物材機構 WPI-MANA

【緒言】生体内でのタンパク質をはじめ、ソフトマターの機能発現において水を含む周囲の 分子との相互作用が大きな役割を果たしている。しかし、ソフトマターが実際に存在する環 境下でソフトマター自身とその表面近傍の分子の構造を相互作用という観点で直接的に決 定・議論することはこれまでほとんど行われていない。われわれはこれまでソフトマターの 機能材料としての表面に関する基礎情報はもちろん、生命活動における水の役割という生物 学的に重要な問題に対する新たな知見を得ることを目的とし、反射赤外分光法と界面選択的 な振動分光法である和周波発生(Sum Frequency Generation: SFG)分光法を「ソフトマター界 面」へ適応することで、分子間相互作用(水素結合等)に関する情報を得ることを目指して 研究を行ってきた(1-9)。本発表では、反射赤外分光法による金基板上に固定化した Calmodulin の機能評価とペプチド固相合成過程におけるペプチド構造のその場追跡および SFG 分光法に よる高分子電解質ポリマーブラシの界面構造評価について紹介する。

【赤外反射吸収分光法による金基板上に固定化した Calmodulin の機能評価】

Calmodulin(CaM)は細胞内Ca²⁺濃度変化のシグナルを伝達するCa²⁺結 合タンパク質である。このシグナル伝達系は筋収縮をはじめとする多 くの生理現象に関わっており、CaMの酵素活性メカニズムの解明は非 常に重要である。しかし、これまでのCaMの酵素活性に関する多くの 研究は間接的手法によるもので、リアルタイムで直接観測した例は少 ない。そこでCa²⁺濃度変化に応じたCaMの構造変化およびCaM結合 ペプチドであるMastoparan(MP)との結合、解離の過程をin situ 赤外 吸収分光法によりリアルタイムで直接観測した。

N 末端にオリゴヒスチジンタグを発現させた CaM を金基板上に修飾した nickel-chelating nitrilo-triacetic acid (Ni-NTA)と結合させることで基板に固定した

acid (Ni-NTA)と結合させることで基板に固定した (図 1)。In situ 赤外吸収測定は半円筒 Si プリズム 上に作製した金薄膜表面で赤外光(1000~4000 cm⁻¹) を内部反射させ、金薄膜上の CaM、および MP の赤外 吸収を測定した。図 2 は金基板上に固定された CaM の各Ca²⁺濃度のリン酸緩衝液中におけるアミド領域 のIRスペクトルである。リファレンスはCa²⁺を含ま ないリン酸緩衝液中で測定した結果を用いた。Ca²⁺

濃度が 10⁻⁷M (図 2(a)) から 10⁻³ M (図 6 (e)) へ上昇するにつれて、1550 cm⁻¹と 1634 cm⁻¹にピークが 出現した。これらはそれぞれEFハンド内の酸性残基が Ca²⁺と配位結合した構造のピークと、セントラルへリッ クスが伸びた構造のピークに帰属される。再びCa²⁺濃度 が 10⁻³ Mから 10⁻⁷M (図 2(i)) へ減少するとこれらのピ ークは消失した。この変化のCa²⁺濃度依存性は図 3 に示 すように過去の均一系の結果と一致しており、固定化 CaMは均一系と同様に振舞うことを示している。以上

の結果に基づく固定化CaMのCa²⁺結合による構造変化の模式図を図4に示した。また、この 基板を用いて種々のMP濃度におけるCaMとMPの結合、解離過程のリアルタイム測定を行い、 基板上のCaMがMPの分子間相互作用により、図5に示す構造変化を起こすことを明らかにし た。

【赤外反射吸収分光法によるペプチド固相合成過程におけるペプチド構造のその場追跡】

ペプチド固相合成法は表面をアミノ基で修飾したポリスチレンビーズなどを固相として用 い、脱水反応によって段階的にアミノ酸鎖を伸長する手法である。しかし、これまで固相合 成過程におけるペプチドの構造を直接評価した例はなく、表面においてペプチドがどのよう に伸張しているかは未だ不明瞭である。固相合成過程におけるペプチドの構造評価法の確立 はペプチド固相合成法の収率の改善、および合成が困難とされる「difficult sequence」の合 成にも繋がると考えられ非常に重要である。本研究は溶媒によって異なる構造を持ち、表面 固定による機能付与に興味が持たれているポリプロリン(8)をペプチド固相合成法により金 基板上で段階的に合成し、各段階の構造を赤外反射吸収分光法により評価した。

金基板上に、末端アミノ基を有する単分子層を 自己組織化法により構築した後、①9・フルオレニ ルメチルオキシカルボニルプロリン(Fmoc-Pro) を含む溶液を添加することで保護基を有するプロ リンの導入、②ペピリジン溶液を添加することで 保護基の除去を行った。以下①、②を繰り返すこ

図6 金基板を用いたペプチド固相合成スキーム

とでポリプロリンを段階的に金基板上に構築した(図6)。In situ 赤外吸収測定は半円筒Si プリズム上に作製した金薄膜表面で赤外光(1000~4000 cm⁻¹)を内部反射させ、金薄膜上のポ リペプチド由来の赤外吸収を測定した。図7はジクロロ メタン中で得られた各段階のポリプロリンのIRスペク トルである。合成初期段階ではプロリンのC=O伸縮振動 に由来する1680~1650 cm⁻¹のブロードなピーク、プロリ ンのC-N伸縮振動などに由来する1439 cm⁻¹のピーク、ア ミンSAMとプロリンによるアミド結合のN-H変角振動 とC-N伸縮振動のカップリングに由来する1364 cm⁻¹ のピークが観測された。プロリンの導入回数の増加に

伴いプロリン由来の1680~1650 cm⁻¹のブロードなピークと1440 cm⁻¹付近のピーク強度の増加が観測されたことから、ポリプロリンが段階的に金基板上に固定化されていることが確認された。ポリプロリンは周囲の環境により異なった構造をとるため、ペプチド固相合成の溶媒依存性についての検討も行った。

【SFG 分光法によるポリマーブラシの表面分子配向と界面水の構造評価】(7)

高分子薄膜の特性は表面の分子構造に大きく影響される。表面に高感度な和周波発生 (SFG)分光法を用いると高分子の表面における分子構造及び配向を選択的に知ることが出来 る。本研究では高分子鎖の一部を固体表面に固定したポリマーブラシの、乾燥窒素・気体及び 液体の水に接した際の表面分子構造を評価した。アルキル化ポリビニルピリジン (CnPVP,

n=0, 2, 6, 12) を四級化反応により石英基板上に固定したポリマ ーブラシを試料とした。図 2-(a)はC6PVP/乾燥窒素界面のSFGス ペクトルである。2879 cm⁻¹ と 2940 cm⁻¹ のピークは各々側鎖末 端のメチル基の対称伸縮及びフェルミ共鳴、3030-3070 cm⁻¹ のブ ロードなピークはピリジン環の芳香族CH伸縮、2859 cm⁻¹ と 2913 cm⁻¹ 付近のメチレン基の対称及び非対称伸縮に帰属される。こ の試料を飽和水蒸気(b)、水(c)、および再び乾燥窒素(d)と接触さ せた時の構造変化をOH領域の結果に基づく水の構造とあわせて も議論する。

【参考文献】

(1) S. Ye, S. Nihonyanagi and K. Uosaki, PCCP, 3, 3463 (2001).

(2) H. Noguchi, T. Okada, and K. Uosaki, Faraday Discuss., 140, 125 (2006).

(3) H. Asanuma, H. Noguchi, K. Uosaki, and H-Z. Yu, JACS, 130, 8016 (2008).

- (4) H. Noguchi, H. Minowa, T. Tominaga, J. P. Gong, Y. Osada and K. Uosaki, PCCP, 10, 4987 (2008).
- (5) H. Asanuma, H. Noguchi, K. Uosaki, and H. Yu, J. Phys. Chem. C, 113, 21155 (2009).
- (6) H. Noguchi, K. Taneda, H. Minowa, H. Naohara, K. Uosaki, J. Phys. Chem. C, 114, 3958 (2010).
- (7) K. Uosaki, H. Noguchi, R. Yamamoto, and S. Nihonyanagi, JACS, 132, 17271 (2010).
- (8) Y. Han, H. Noguchi, K. Sakaguchi, and K. Uosaki, *Langmuir*, 27, 11951 (2012).
- (9) Y. Zhang, H. Noguchi, S. Ye, and K. Uosaki, Surf. Sci., in press (2012).

図 8 C6PVP/Quartz 界面の CH 伸縮領域の SFG スペクト ル.(a)乾燥窒素中、(b)飽和水 蒸気中、(c)水中、(d)乾燥窒素 中.

リン脂質二分子膜の酵素反応に伴う界面構造解析

(北海道大学・触媒化学研究センター) 叶 深

【序】脂質二分子膜と種々の生体分子との相互作用過程を解明することは、細胞膜の機能発現を理解する上で極めて有用である.ホスホリパーゼA2 (PLA2)は、リン脂質分子の不斉炭素に接するエステル結合の加水分解反応を選択的に触媒することが知られている[1].これまでに様々な手法により検討されてきたが、脂質二分子膜表面におけるこの酵素反応の反応機構や反応速度論について分子レベルでまだ解明されていない.本研究では、PLA2によるリン脂質分子の加水分解に伴う脂質二分子膜の構造変化について、界面分子の構造と配列に極めて敏感である和周波発生(SFG)振動分光法と原子間力顕微鏡(AFM)などのその場計測技術を駆使し調べ、該酵素反応の速度論と反応機構の解明を目指している.

【実験】リン脂質分子はジパルミトイルホスファチジルコリン(DPPC)を用いた. 脂質二分 子膜は,LB法により,固体膜に対応する 30mN/mの表面圧で基板表面へトランスファーさ れた.脂質分子の不斉炭素に隣接するエステル結合の加水分解反応において,L型分子のみ と触媒作用するPLA2の立体選択性を利用し,L/L型二分子積層膜のほかに,L/D,D/L, D/D及びラセミ型LD/LDのような二分子積層膜の加水分解に伴う膜表面の構造変化につい て調べた.SFG分光測定は,当研究室に構築されているブロードバンドSFG分光測定システ ムで行われた[2,3].AFM 測定は,Aglient 5500を用いてタッピングモードで行われた.測 定は 5mM Ca²⁺を含むトリス緩衝溶液(pH 8.9)中で行われた[4].

【結果と考察】L-DPPCのみからなるL/L二分子膜の加水分解過程についてSFG測定により 調べた[3]. 酵素が導入された最初の約 10 分間ではDPPC分子末端メチルの非対称伸縮のピ

ークが減少したが、対称伸縮のピークが殆ど変化していなかった.これはPLA2の導入に伴い、DPPC分子の再配向によるものと考えられる.その後、二分子膜からのSFG信号が急速に減衰し、約30分後ほぼ消失した.このことから、PLA2による加水分解過程は「誘導と加速」といった二段階で進行することが示唆された.そして、PLA2は二分子膜表面に吸着し、 脂質分子を最適な構造に再配向させてから、反応が一気に加速されたものと予想される.

Figure 1. Time-dependent SFG peak intensities for D/Land L/D DPPC bilayers after PLA₂ introduction.

この加水分解過程の反応機構を詳細に検討するために、PLA2の高い立体選択性を利用し、 キラリティが異なるDPPC分子を積層した二分子膜を構築し、PLA2による触媒反応過程を追 跡した(図 1)[3]. 上層にD(反応性なし)と下層にL(反応性あり)を積層したD/L二分子膜の場 合、上層と下層からのSFG信号がゆっくり減衰し、基本的にPLA2酵素が存在しない場合に 近い挙動を示した. これは脂質二分子膜の加水分解の速度が遅く、SFG信号の低下は主に脂 質分子のフリップ・フロップが関与するものと考えられる.一方、L/D積層膜では、酵素が 導入されると同時に、L層とD層のSFG信号ともに速く減衰し、L-DPPC由来のSFG信号が先 に消失し、D-DPPC由来のSFG信号の減衰速度が小さくなる. PLA2に触媒される二分子膜の 加水分解反応は膜の表面層から始まり、その生成物が表面から脱離すると同時に、下層にある分子が表面層に反転し、D/D二分子層を形成するために、その信号強度が減少すると示唆される. 上層のL-DPPCが少なくなると、D-DPPCの反転も起こりにくくなるので、減少速度が低下する [3].

一方,加水分解に伴う膜表面の形状変化や反応サイトに関する情報が,SFG 測定から直接 に得られないので, 我々はさらにその場 AFM 観察により膜表面の形状変化について追跡 した[4]. 図 2 には, L/L 二分子積層膜の加水分解反応に伴い観測された AFM 結果を示す. 室温の条件下では,脂質二分子膜の表面に深さが二分子の DPPC の長さ(~5nm)に相当 する穴が観測され,膜作成の際にできた欠陥だと考えられる.酵素を導入した直後,AFM イメージの変化が小さく,酵素添加した約 10 分後,これらの表面欠陥の縁からリン脂質分 子の加水分解が進行するようになり,約 30 分で基板表面にある DPPC 分子が殆どなくなっ た.これは,SFG 測定で得られた結果と対応している.

また、二分子膜の構成方法により、二分子積層膜の加水分解速度が大きく異なっており、 L/L>>LD~LD/LD>D/L>>D/Dという順番で減少することが観測された.さらに、L/D、 D/LとLD/LDの二分子膜の加水分解の最終段階において、約五割の脂質分子が表面に残っ たことから、PLA2の高い立体選択性を示した.ここで、脂質分子の表面拡散とフリップ・ フロップ運動の速度を考慮しながら、Michaelis-Menten式に基づき、PLA2による脂質二分 子膜の加水分解反応の速度論と反応機構の定量的な説明を試みている[4].

Figure 2. AFM images $(1 \times 1 \ \mu m^2)$ of L/L-DPPC bilayer (a) before and (b)-(d) 8, 15, 29 min after PLA₂ injection.

このように, SFG と AFM などの高感度の界面計測技術を活用し, 擬似細胞膜表面における酵素触媒反応過程のその場追跡に成功した. 今後, 分子レベルで細胞膜表面における様々な反応過程への応用を目指したい.

【参考文献】

(1) Wilton, D. In *Biochemistry of Lipids, Lipoproteins and Membranes*; 5th ed.; Vance, D., Vance, J., Eds.; Elsevier B.V.: Amsterdam, 2008, p 305.

- (2) Ye, S.; Noda, H.; Morita, S.; Uosaki, K.; Osawa, M. Langmuir 2003, 19, 2238; 2004, 20, 357
- (3) Tong, Y.; Li, N.; Liu, H.; Ge, A.; Osawa, M.; Ye, S. Angew. Chem. Int. Ed. 2010, 49, 2319
- (4) Wu, H.; Yu, L; Osawa, M.; Ye, S. submitted.

【略歴】1993年3月北海道大学大学院理学研究科化学専攻博士後期課程修了,北海道大学化 学科助手,米国カリフォルニア大学バークレー校博士研究員,科学技術振興事業団「さきが け研究」研究員(兼任)等を経て2001年 北海道大学 触媒化学研究センター 准教授,同セ ンターバイオインターフェース研究クラスター・リーダー,現在に至る。

ポスターセッション

					題名
	計画	菊池	明彦	東京理科大学 基礎工学部	
1			岩下 直人	東京理科大学 大学院基礎工学 研究科 材料工学専攻	温度応答性ブラシの一次構造がタンパク質相互作用に与える効果
2			坂本 和美	東京理科大学 大学院基礎工学 研究科 材料工学専攻	生体分子の高分離能を有する感温性高分子ソフト界面の構築
	計画	高井	まどか	東京大学大学院工学系研究科	
3			久代 京一郎	東京大学工学系研究科バイオエ ンジニアリング専攻	表面固定化された細胞外マトリックスマイクロパターンによる細胞方向 性移動のコントロール
	計画	長崎	幸夫	筑波大学大学院 数理物質科学 研究科	
4			片町 仁哉	筑波大学大学院 数理物質科学 研究科	次世代タンパク質PEG化技術の開発
	計画	前田	瑞夫	理化学研究所	
5			平峯勇人		新しいセンシング材料としてのDNA担持ナノ粒子
	計画	宮原	裕二	東京医科歯科大学生体材料工学 研究所	
6			前田 康弘		半導体/生体分子ナノ界面の構築とバイオトランジスタへの応用
7			松元 亮		「バイオトランジスタ」のための界面設計戦略
8	研究分 担者	馬原	淳	国立循環器病センター研究所	ベタインポリマー固定化界面による細胞ローリングカラムの開発
9	公募	藤井	秀司	大阪工業大学工学部	ヤヌス粒子の界面吸着現象を利用した分散系の安定化
	公募	山本	拓矢	東京工業大学理工学研究科	
10			菅井直人		主鎖方向の制御された環状ステレオブロックおよびホモポリ乳酸の合 成と特性評価
11	公募	遊佐	真一	兵庫県立大学大学院工学研究科	糖を側鎖結合した星形ポリマーとレクチンの相互作用
12	公募	森田	裕史	産業技術総合研究所ナノシステ ム研究部門	ポリマー溶解界面の大規模シミュレーション解析
	公募	武田	直也	早稲田大学大学院 先進理工学 研究科 生命医科学専攻	
13			峯口 竜		配向化させた「弦状」エレクトロスピン・コラーゲンファイバー足場 での効率的な三次元筋管形成
	連携協 力者	岩﨑	泰彦	関西大学	
14			折坂雅樹		高密度グラフト膜を表面に形成させた金ナノ粒子によるタンパク質検出

温度応答性ブラシの一次構造がタンパク質相互作用に与える効果

〇岩下直人·麻生隆彬·菊池明彦 東京理科大学 大学院基礎工学研究科

【緒言】密度高くかつ、鎖長制御されたポリマーブラシを固体表面に修飾する方法として、 原子移動ラジカル重合 (ATRP)が有効な方法であることが認識されている。また ATRP の特徴 を利用し修飾するポリマーの密度や分子量、組成などを変化させ、表面の濡れ性および細胞 やタンパク質の吸着性などを制御する方法が近年注目されている^[1]。一方、化学構造により タンパク質の吸着を特異的に制御し、特定の物質のみを分離・精製する方法として固定化金 属イオンアフィニティークロマトグラフィー (IMAC)が知られているが^[2]、複雑な操作によ り生じるタンパク質変性の可能性や競合剤など混入物の存在が問題となっている。これらを 解決するため、温度応答性高分子のポリ(*N*-イソプロピルアクリルアミド)(PNIPAAm) に金属 イオンのリガンドとなるニトリロ三酢酸 (NTA)基を導入し、PNIPAAm の温度変化に伴う高分 子鎖の伸長 / 凝集と、それに伴うリガンド-タンパク質間の見かけの結合定数の変化を利用し たタンパク質の吸・脱着制御を検討している。しかし、共重合によりリガンドがポリマー鎖 中へランダムに導入されることで、温度応答に伴う見かけの結合定数の変化が制御しにくく

なることが予想される。 そこで本研究では、モノ マーの重合順序を変化す ることでポリマーの一次 構造を制御し、タンパク 質相互作用を明確に制御 可能な材料表面の設計を 目的とした。

Figure 1 Illustration of poly(NIPAAm-co-NTA) (PIN) modified surface having controlled primary structure. (Ligand position; (a) random: R, (b) proximal end : P, (c) distal end: D)

【実験】モノマーとして (1)NIPAAm、および (2)NIPAAm と tert-ブチルアクリレート (tBA) の混合物 (99.5:0.5 mol/mol)をそれぞれ N,N-ジメチルホルムアミド (DMF)に溶解した。続い てトリス(2-(N,N-ジメチルアミノ)エチル)アミン (Me₆TREN)、CuCl を加え、窒素置換した。 これらの溶液を用い、ATRP 開始基を修飾した内径 100 µm のフューズドシリカキャピラリー 内壁表面に対して 25°C で表面開始原子移動ラジカル重合 (SI-ATRP)を所定時間行った。その 際、(1)と(2)の溶液を用いる順序を変化させ、得られる高分子鎖中の NIPAAm / tBA 組成を制 御した。重合停止後、5-アミノ-1-カルボキシペンチルイミノ二酢酸 (AB-NTA)とトリエチル アミン (TEA)を溶解したジメチルスルホキシド (DMSO)溶液を 70°C で 24 h 通液し、tBA の 側鎖を NTA に変換することで一次構造を制御した poly(NIPAAm-co-NTA) (PIN)修飾キャピラ リーを得た。それらの表面について、FITC により蛍光標識化したウシ血清アルブミン (FITC-BSA)を用いて、蛍光検出器を備えたマイクロ HPLC によりその吸着挙動を評価した。 【結果・考察】まず、ATRP 開始基を修飾した内径 100 µm のフューズドシリカキャピラリー 内壁表面に対して、PNIPAAm または poly(NIPAAm-co-NTA) (PIN)をそれぞれ 6 h 重合し、 PNIPAAm 6 h および NTA をランダムに導入した PIN 6 h-random (R)修飾キャピラリーを調製 した。それら高分子表面に対する BSA の吸着量を、マイクロ HPLC を用いて評価した(Fig. 2 a,b)。その結果、4°C、37°C のいずれの温度でも BSA は吸着しなかった。一方、PIN 6 h-R に 対して Ni²⁺を固定化した PIN-Ni²⁺ 6 h-R 修飾表面では大幅な吸着量の増大が認められ、かつ温 度によらず BSA が吸着した (Fig. 2c)。重合において常に新しいモノマー溶液をキャピラリー 内に通液し続けたことで、タンパク質と相互作用しうる NTA-Ni²⁺が露出し、タンパク質吸着 量が増大したと考えられる。一方、疎水性のテストステロン (tes)は、37°C でその溶出時間が 4°C の場合に比べて 2 分程度遅れ、脱水和した PNIPAAm 表面と tes が疎水性相互作用を生起 することが示された。したがって、これらのキャピラリーは温度応答性を有するものの、ポ リマー鎖中に NTA がランダムに存在しているために BSA 吸着の温度依存性が見られなかっ たと考えられる。

そこでまず PIN-Ni²⁺ 3 h-R 修飾表面を調製し、さらに 3 h ごとに重合溶液を交換することで PIN-Ni²⁺ 3 h-R 上で NIPAAm の ATRP を 3 h あるいは 6 h 行い、NTA を基板表面付近に導入し た PIN-Ni²⁺ 6 h-proximal end (P)および 9 h-P を調製した。PIN-Ni²⁺ 3 h-R では、6 h-R と同様温 度によらず BSA が吸着した(Fig. 2d)。一方 PIN-Ni²⁺ 6 h-P では、4°C で 30%、37°C で 85%の

BSA が吸着し、PIN-Ni²⁺9h-PではBSA の吸着量は4℃ で3%、37℃で85%となり、温度に応答して吸着量に 差が認められた (Fig. 2e, f)。これは、NTA を含まない PNIPAAm が重合末端側に存在することで、4℃ではポ リマー鎖の水和に伴い生じた排除体積効果により NTA が遮蔽されたことでBSA の吸着量が大幅に低下 したと予想でき、さらに、重合時間9hに延長すると、 PNIPAAm 鎖が延長し、NTA の遮蔽がより有効に機能 したと考えられる。このように、末端のPNIPAAm 鎖 の存在とその鎖長効果により、温度応答に伴うBSA の吸着量に変化が現れるとわかった。

謝辞本研究の一部は、文部科学省科研費新学術領域 研究「ソフトインターフェースの分子科学」(20106004) により実施した。

Figure 2 Adsorbed amount of FITC-BSA for PNIPAAm or PIN modified capillary. (a) PNIPAAm 6 h, (b) PIN 6 h-R, (c) PIN-Ni²⁺ 6 h-R, (d) PIN-Ni²⁺ 3 h-R, (e) PIN-Ni²⁺ 6 h-P and (f) PIN-Ni²⁺ 9 h-P.

Nature, **258** 558-559 (1975)

Figure 3 Adsorption behavior between $PIN-Ni^{2+}$ modified surface and FITC-BSA.

生体分子の高分離能を有する感温性高分子ソフト界面の構築

○坂本和美・麻生隆彬・菊池明彦東京理大学 大学院基礎工学研究科

【緒言】医薬品や生体分子の分離・精製に用いる一般的なクロマトグラフィーカラムは、 有機溶媒を移動相とするため生体分子の変性や分離後の廃液による環境への負荷が懸念され ている。この問題に対し、水のみを移動相とし温度変化させることにより分離を行う感温性 クロマトグラフィーカラムの研究が行われてきた。このカラムは、水系単一溶媒での分離を 実現するために、水中で温度変化により親水性・疎水性が変化する温度応答性高分子ポリ(N-イソプロピルアクリルアミド) (PNIPAAm)修飾表面が分離担体として用いられている¹⁾。また 我々は微量分析を目的とし、マイクロキャピラリー内壁面に PNIPAAm を表面開始原子移動 ラジカル重合法 (SI-ATRP 法)により PNIPAAm を修飾したカラムの調製を検討している²⁾。 このようなマイクロ流路での分離は、環境³⁾や医療の分野⁴⁾における応用においてわずかな検 体中のごく微量に含まれる疎水性のステロイドホルモン等の分離に有用であるが、さらなる 高感度化が求められる。一方で、大きな比表面積と比較的広い貫通孔を有するモノリス シリカカラムは、高い分離能力を持ち、低背圧下での高速分離が可能なカラムとして実用化 されている⁵。本研究では、キャピラリー内にモノリスシリカを調製し、その表面に PNIPAAm を修飾することで温度スイッチングを用いた高い分離能力を有するキャピラリーカラムの 調製を行った。さらに、ミクロ高速液体クロマトグラフィー (µHPLC)を用いて調製した カラムの評価を行い、生理活性物質の分離を検討した。

【実験】氷浴下で所定量のポリ (エチレングリコール)とテトラ メトキシシランを酢酸水溶液に 溶解し、ゾル溶液を調製した。 脱気後、アルカリ洗浄し中和し た 10 cm のフューズドシリカ キャピラリーにゾル溶液を通液 し、40°C でゲル化反応を行った 後、乾燥したモノリスシリカ充 填キャピラリーを焼成した。

Fig. 1 PNIPAAm modified monolithic silica surface in capillary *via* SI-ATRP.

トルエン洗浄後、2-(*m/p*-クロロメチルフェニル)エチルトリクロロシランのトルエン溶液を通 液し、モノリスシリカ表面に SI-ATRP 開始剤を固定化した (Fig.1)。窒素雰囲気下で所定量の NIPAAm、CuCl、トリス-(2-(*N*,*N*-ジメチルアミノ)エチル)アミン (Me₆TREN)の DMF 溶液を 通液し、モノリスシリカ表面に PNIPAAm を修飾した。モノリスシリカの構造は走査型電子 顕微鏡 (SEM)で観察し、PNIPAAm 修飾モノリスシリカキャピラリーの温度変化にともなう ステロイドの溶出挙動をµHPLC で解析した。

【結果・考察】内径 100 µm のキャピラリー内にゾルゲル法を用いてモノリスシリカを充填し、 SEM によりその断面を観察した (Fig. 2-a)。キャピラリー内には、球状シリカが三次元ネット ワーク状に連なり、5 µm 以上の空隙を有する骨格が認められた (Fig. 2-b)。また、高分子修 飾前後でのモノリスシリカの表面を比較すると、モノリスの空隙に大きな変化は見られなか った。さらに、ポリマー修飾後のモノリスシリカキャピラリーをµHPLC に接続した際の送液 時の背圧は、10~40°C の下で 0.6~1.0 MPa と非常に低背圧での送液が可能であった。そのた め、重合後においても大きな流路が保たれていることが示唆された。

次に、µHPLCを用いて、調製したカラムに 親水性のアデノシン (ade)と疎水性であるテ ストステロン (tes)の 2 種類の生理活性物質 を送液し、その溶出挙動を評価した。親水性 の ade は溶出挙動が温度に依存しないため基 準物質とし、重合時間の異なるカラム長 10 cm PNIPAAm 修飾モノリスシリカキャピラ リーを用いて、生理活性物質の溶出挙動を比 較した。その結果、重合時間の延長に伴い、 すべての温度範囲でより大きな保持係数が 得られた。これは、重合時間の増加に伴い高 分子の鎖長が生長し、より長い鎖長のもの程 高温下で疎水性物質と大きな相互作用を生 じたためと考えられる。さらに、重合時間を 延長する程、高温下で疎水性の強い物質のピ ークはより大きく広がった。これは、疎水性 の強い物質程、疎水化した高分子界面との間 でより強い疎水性相互作用が起こったため、 溶出に長い時間を要したと考えられる。

また、重合時間 3 時間で調製した 10 cm PNIPAAm 修飾モノリスシリカキャピラリー (mono-10)と、モノリスシリカを充填していな い 100 cm PNIPAAm 修飾中空キャピラリー (hollow-100)の温度変化に伴う tes 保持係数の 変化を評価した (Fig. 3)。これより、mono-10、

Fig. 2 SEM image of monolithic silica in fused-silica capillary. $(i.d.:100 \ \mu m)$

Fig. 3 Temperature-dependent change in retention factor for testosterone on PNIPAAm grafted monolithic silica capillary (10 cm, open circle plot) and PNIPAAm grafted hollow silica capillary (100 cm, closed circle plot). Reaction time: 3h. Monomer concentration: 1 M.

hollow-100 ともに、温度上昇に伴ってテストステロンの保持時間が延長し、PNIPAAmの下限 臨界溶液温度付近である 30~40°C 間で最も大きな変化が得られた。このことから、モノリス シリカ充填・中空カラムともに、PNIPAAm 鎖が修飾できたことが示された。ここで、モノリ スシリカ充填のものは、中空のものと比較して非常に大きな保持係数の変化が得られた。こ れは、モノリスシリカの充填によってキャピラリー内の比表面積が著しく増大したことから、 PNIPAAm 鎖の修飾面積が増加したためであると考えられる。さらに、μHPLC による調製し たカラムを用いた生理活性物質の分析時間に着目すると、PNIPAAm 修飾モノリスシリカキャ ピラリーカラムでは、中空のものに比べて注入した tes が高温下で比較的短時間ですべて溶出 した。そのため、これらの結果より PNIPAAm 鎖を修飾したモノリスシリカキャピラリーカ ラムは高い分離能力を持ち、このカラムを用いることで短時間での生理活性物質の分離精製 が期待できる。

【謝辞】本研究は文部科学省科学研究費補助金新学術領域研究 (20106004)により行った。 【参考文献】

- 1) H. Kanazawa, et al. Anal. Chem, 1996, 68, 100.
- 2) N. Idota, et al. Langmuir, 2006, 22, 425.
- 3) A. Cappiello, et al. Anal. Chem. 2001, 73, 29
- 4) F. Mashige, et al. J. Chromatogr. B, 1994, 658, 63
- 5) N. Ishizuka, et al. J. High Resol. Chromatogr. 2000, 23, 111,

表面固定化された細胞外マトリックスマイクロパターンによる細胞方向性移動 のコントロール

久代京一郎1、アナンド・アシタギリ2、高井まどか1

1東京大学工学系研究科バイオエンジニアリング専攻、2ノースイースターン大学院化学工学専攻

要約:近年、材料の弾性や材料表面に固定化するリガンドの種類等を用いて細胞の様々な挙動、主に接着性や増殖性等、を制御する技術が細胞工学分野において広く研究されている。 また、細胞の配向や移動を制御する目的で、マイクロパターンの使用が広まり、最近では非対称性の形状や構造のマイクロパターンよる非勾配的細胞走性の効果が注目されている[1,2]。 本研究は、リガンド(細胞外マトリックスタンパク質やペプチド)の表面固定方法(物理吸 着や化学結合)や固定箇所の非対称的図形を利用し細胞の移動方向を定め、その移動メカニ ズムを理解するのを目的とした。

リガンドの種類、固定化状態を変化させて細胞移動速度を検討したところ、物理吸着された リガンドより化学結合されたリガンドの方が細胞速度は速く、RGD ペプチド分子(RGD)より フィブロネクチン(FN)がより細胞の移動を促進させた。さらに、FN を COOH-SAM に化学 結合した非対称な涙状マイクロパターンを特定の配置や間隔で構成すると、上皮細胞が一定 方向に高確率(特定方向のパターン間移動の割合: 82%)で移動する事が分かった。PDMS スタ ンプを用いて FN を直接物理吸着で涙状マイクロパターンを作った場合、この高い方向性は 軽減され(65%)移動性も低下した。高い方向性移動をしている細胞を高倍率で観察したところ、 規則正しい新たな膜状仮足の形成が細胞移動の方向性を維持していることも分かった。本研 究の結果は形状や構造を駆使した化学勾配を用いない非勾配的な細胞走性制御システムであ り、チップ上の細胞分別コントロールや組織スキャフォールドの形成に応用でき、さらに体 内に存在する様々な組織形状上の細胞移動の生物学的理解にも繋がると思われる。

<u>背景</u>:細胞移動の方向性は臓器形成、免疫反応、癌の転移等、様々な生物学的現象に 深く関わっている。従来の化学勾配による細胞の走化性を初め、走触性、走電性等、 様々な勾配に基づく細胞の方向走性が知られているが、これら勾配を実験等で用いる 場合様々な不都合が生じる場合がある。勾配を使わない形状や構造に基づく細胞の方向性 移動の研究は再生医学等への応用ポテンシャルを保持し、様々な生物学的現象を理解するの にも役立つ。

<u>実験方法</u>:リガンドはフィブロネクチン(FN)とRGDペプチド分子(RGD;配列GRGDSP)を 使用した。マイクロパターンはPDMSスタンプを用い、図1に示すマイクロコンタクトプリ ンティング手法を用いて、ポリスチレン上にリガンドを物理吸着させたリガンド固定化基板 (Ads)とガラス上に金・チオール結合を用いた自己組織化単分子膜を作りリガンドを化学結合
させた基板(SAM)を作成した(図1)。Cy3でラベル化された牛血清アルブミン(BSA)を混ぜ
パターンを蛍光可視化した。
(A)
(1) PDMS (2) Pluronic F-127 (3)

<u>結果と考察</u>:

1. リガンドの種類と固定方法の細胞速度への影響
まず物理吸着したリガンド上での細胞移動を観察
すると、FN の方が RGD より上皮細胞の移動速度
が高かった。化学結合したリガンドを比較すると、
FN と RGD の間に有意な違いは見られなかったが、
両方のリガンドにおいて物理吸着より移動速度は上がった(図
2)。化学結合で固定化されたリガンドの方が細胞の牽引力が高
まり移動速度が増加したと思われ、RGD の増加に関してはリガ
ンドの密度または配向性が関わっていると推測される。

2. 涙状マイクロパターンと細胞移動の方向性

FN を、図3に示す涙状マイクロパターン上に形成させ、細胞

移動の方向性を調べたところ、同じパターンでも 物理的に吸着した FN(65%)より、SAM-FN の表面 (82%)で高い方向性が実現された(図3)。さらに、 高い方向性移動の細胞を高倍率で観察すると、パ ターン間を移動する際横に新たな膜状仮足を形成しているこ とが分かった。細胞の膜状仮足形成は基板への牽引力やパター ンの鋭さに比例していることが知られており[3]、このことから、 SAM 上の高い方向性は細胞の牽引力増加による膜状仮足形成 の活性に起因しているものと思われる。

結論:リガンド分子の種類によりSAMの表面が上皮細胞の移動速度を物理吸着の表面より
40~100%増加させる事が分かった。さらに、涙状マイクロパターンによる高い方向性制御は細胞の

70 60 Speed (µm/hr) 50 40 30 20 Cell 10 0 Ads SAM Ads SAM RGD RGD FN FN

図2 RGDやFNリガンドの均一なAdsやSAM 表面上の細胞移動速度。全体的にSAM 表面上の 速度が Ads の速度を上回った。

図3 FN の涙状マイクロパターンの方向性。特定の方向に接着部位間を細胞が移動した割合が表示されている。Ads に比べ SAM 表面の方が高い方向性が観察され、細胞の移動速度も高かった。

基板への牽引力に左右される高い移動性や膜状仮足形成が不可欠であることが分かった。

<u>参考文献</u>: [1] Kumar, G., *et al. Advanced Materials* **2007**, *19*, 1084-1090.; [2] Mahmud, G., *et al. Nature Physics* **2009**, *5*, 606-612.; Brock, A. *et al. Langmuir* **2003**, *19*, 1611-1617.

次世代タンパク質PEG化技術の開発

片町 仁哉¹⁾、河崎 弘道¹⁾、池田 豊¹⁾、長崎 幸夫^{1), 2),3)*}

1), 筑波大学大学院 数理物質科学研究科

2) 筑波大学大学院 人間総合科学研究科

3).物質・材料研究機構 国際ナノアーキテクトニクス研究拠点 (NIMS, MANA)

ポリエチレングリコール(PEG)は、人体に対して低毒性であることが知られており、 また非免疫原性の高分子であるため生体適合性材料として薬剤開発をはじめ医療の分野で多 く用いられている。近年、様々なタンパク質が治療薬として効果を発揮しているが、タンパ ク質治療薬の開発においてPEGによるタンパク質の修飾は非常に有用であり盛んに研究さ れている。タンパク質のPEG化には1)タンパク質のサイズを増加させ腎臓からの排泄を 抑えられる、2)タンパク質の血中における分解耐性を上昇させる、3)タンパク質の生体 内における抗原性を低下させるといった利点があり、すでに幾つものPEG化タンパク質が 医薬品として開発されている。現在広く用いられているPEG化の技術は、活性エステル末 端PEGをタンパク質のアミノ基と反応させ、アシル化によりPEG化タンパクを調製する 方法である。このPEG化の技術では、アミノ基がアミド結合に変化するため、電荷バラン スや水素結合性の誘起により、しばしばタンパク質活性の大幅な低下を招くことがある。タ ンパク質の活性を維持したまま効率的なPEG化を行うためには、様々なコンジュゲーショ ンの化学が不可欠である。これまでにアルデヒド末端の還元アミノ化などによりアミノ基を 残存させる研究が行われているが、反応条件の厳しさ、反応効率の悪さ及び副生成物の問題 などから、医薬品としての効果が期待されながらも現状のPEG化技術では開発に至らなか ったタンパク質も数多く存在する。そこで我々は中性付近の温和な条件で効率よく反応し、 これまでとは全く異なる結合様式にてタンパク質のアミノ基をアルキル化によってPEG化 する技術の開発を行った。すなわち図1に示すように混合するだけでタンパク質の1級アミ ンとのみ選択的に反応し、アミノ基を残存させることでPEG化した後も高いタンパク質の 活性を維持させる事を目的とした。

末端にグルタルアルデヒド基を有する新規2-arm PEG (PEG-GALD, com pound 1)の合成を試みた。合成経路を図2に示す。各化合物の解析は、¹H-NMR、 MALDI-TOF MS、GPCを用いて行った。合成したPEG-GALDとアミノ基 の結合部

Figure 1. Novel PEGylation Chemistry for proteins modifications

GALDと2-アミノエタノールを反応させ、¹H-NMR、MALDI-TOF MSによ る解析により図1に示す反応が進行したことを確認した。

Figure 2. Synthetic route of a novel PEG derivative possessing glutaraldehyde moiety

続いて、合成したPEGを用いてPEG化タンパク質を 構築した。本実験では、モデルタンパク質としてリゾチ ームを用いた。合成したPEGとリゾチームを0.1M リン酸緩衝液中(pH7.0)で反応させた。反応は4℃ の中性水溶液において効率よく進んだ。HPLC、SD S-PAGE及びMALDI一TOF MSによる解析 の結果、PEG化リゾチームが合成できたことを確認し た。本手法によりPEG化したリゾチームの活性を現在 広く用いられている活性エステル末端PEG(PEG-NHS)によりPEG化したリゾチームの活性と比較し た。

PEG-GALD(10kDa)とPEG-NHS(5 kDa)をそれぞれリゾチームに修飾し、1個のPEG 基が導入されたリゾチームを精製した(図 3)。単離し た各PEG化リゾチームの活性を、溶菌法により測定し た。測定結果を図4に示す。PEG-NHS(5kDa) が1つ導入されたPEG化リゾチームの活性は大きく失 われ、リゾチームに対して1%以下の活性しか示さなか ったのに対し、PEG-GALD(10kDa)が1つ 導入されたPEG化リゾチームの活性は、リゾチームに 対して14.4%の酵素残存活性を示すことが分かった。

タンパク質医薬品のPEG化は数十年来アミノ基のア シル化が圧倒的に多く使用されてきた。開発したPEG 化技術は温和な条件で効率よく反応し、PEG化タンパ ク質の残存活性も大きいことから新しい世代のタンパク 質PEG化技術であり、今後PEG化医薬品開発だけで なく表面処理等様々な分野での応用が期待できる。

Figure 3. SDS-PAGE analysis of unmodified lysozyme (Lane 2) and mono-PEG-lysozyme conjugates (PEG-GALD : 10kDa) (Lane 3) along with protein markers (Lane 1).

Figure 4. Enzymatic activities of PEGylated lysozyme. (a) mono-PEG-lysozyme conjugates (PEG-NHS:5kDa), (b) mono-PEG-lysozyme conjugates (PEG-GALD: 10kDa).

新しいセンシング材料としての DNA 担持ナノ粒子

平峯 勇人¹, 金山 直樹², 藤田 雅弘², 宝田 徹², 前田 瑞夫^{1,2} ¹東京大学大学院新領域創成科学科,²理化学研究所前田バイオ工学研究室

【緒言】

我々の研究室では、二重鎖DNAを表層に密生させたナノ粒子 (DNA担持ナノ粒子)のコロイド安定性がDNA自由末端の塩基 対構造に明敏に応答する奇妙な現象を発見した^{1,2}。図1に示すよ うに、二重鎖DNAの自由末端にミスマッチ(一塩基変異)が存在 すると、高塩濃度下でも粒子は安定に分散したままである。一方、 完全に相補的なDNAを作用させ二重鎖を形成させると安定性が 低下し、粒子は直ちに凝集(非架橋凝集)してしまう。これは、 DNA 密生相(DNA ソフト界面)とバルクとの境界面における 分子構造のわずかな変化がマクロでダイナミックな特異現象を 誘起していることを意味する。温度応答性ポリマーである poly(*N*-isopropylacrylamide)(PNIPAAm)、金ナノ粒子やラテック ス粒子と、核の材質を問わずこの界面現象は生じることが明らか になっている。

現在、DNA鎖とPNIPAAmとの共重合体の精密合成とその自己

完全相補型 末端ミスマッチ型

図1 DNA 担時ナノ粒子のコロイ ド分散安定性に及ぼす末端塩基対 の効果.

組織化を利用したDNA担持ナノ粒子の作製³、DNA末端塩基対構造に応答する特異なコロイド安定 性のメカニズムの解明⁴を目的として研究を強力に推進している。その結果、非架橋凝集の原因の 一つは「ソフト界面での核酸分子の剛直性や熱的揺らぎの変化」にあると推察している。この考え に基づき、分子やイオン認識素子として働く機能性核酸(DNAアプタマー)などと組み合わせるこ とによる一般的な化合物の検出法の開発も行っているのでその結果について報告する。

【DNA アプタマーを用いたターゲット分子の認識】

様々なタンパク質や低分子化合物を認識し結合する 機能性核酸はアプタマーと呼ばれている。DNAアプタ マーをナノ粒子に組み込めば、ターゲット分子の比色 検査法への展開が期待できる。その一例として、我々 は図 2 に示すスキームでATPを特異的に認識する DNAを利用したバイオセンサーを提案した⁵。DNA担持 ナノ粒子上のプローブDNAは、アプタマーの一部と相 補的な配列となるように設計してある。アプタマーと プローブDNA間の二重鎖形成がターゲット分子の認 識・結合によって阻害されることが重要である。系中

図 2 DNA アプタマーを担持したナノ粒子を用 いる分析システム.

に加える第三のDNA(補助DNA)の塩基配列をプローブDNAと完全相補鎖になるようにした場合 (図 2a)、アプタマーがターゲット分子を認識することによってプローブDNAと補助DNAからなる 二重鎖がDNA坦持ナノ粒子表層に形成され、その結果、DNA担持ナノ粒子の凝集が誘起される。 一方、補助DNAの塩基配列をプローブDNAとアプタマーが作る二重鎖の突出部位と完全相補鎖に なるようにした場合(図 2b)、試料中にターゲット分子が存在しなければ、プローブDNA/補助DNA /アプタマーの三成分からなるDNA二重鎖がDNA担持ナノ粒子に形成され凝集が誘発されることになる。

(a)

【アプタザイムと DNA 担持ナノ粒子を用いるバイオセンシン グ】

アプタザイムとは特定の分子などに応答して自己切断反応 を引き起こす機能性核酸のことで、すなわちアロステリックリ ボザイムである。ターゲット分子が存在するとこれに適応する アプタザイムの自己切断が起こる。その結果生じた切断リボ核 酸(RNA)と完全に相補的なDNAを固定化した金ナノ粒子を 系中に存在させておけば、ターゲット分子存在下で非架橋凝集 が生じるはずである(図 3)。本システムではごく少量の切断 RNAが生成されればDNA担持ナノ粒子の凝集を誘起すること が可能であり、検出感度が高いという特徴がある⁶。

【金属イオン検出】

水銀(II)イオンは二重鎖DNA中のチミンーチミン(T-T) ミス マッチペア部に選択的に取り込まれ、水銀(II)イオンを介して 塩基対を形成することが知られている。末端近傍にT-Tミスマ ッチペアを有するDNA二重鎖を担持したナノ粒子は高塩濃度

下でも安定に分散するのに対し、水銀(II)イオ ン共存下では分散安定性が大きく低下する現 象を見いだした⁷。他の二価カチオンでは粒子 は分散したままであり、水銀(II)イオンに特異 的な現象である。これはミスマッチ部位に水 銀(II)イオンが取り込まれて塩基対形成したた めであるのは明らかであり、二重鎖末端の揺 らぎの抑制が非架橋凝集を誘引するとする考 えと矛盾しない。

[References]

- (1) Mori, T. et al., *Langmuir*, **20**, 313–319 (2004).
- (2) Maeda, M., Polymer J., 38, 1099 (2006).
- (3) Pan, P. et al., Polymer, 52, 895 (2011).
- (4) Fujita, M. et. al., J. Colloid Interface Sci., 368, 629 (2012).
- (5) Miyamoto, D. et al., Chem. Commun., 4743-4745 (2007).
- (6) Ogawa et al., Bioorg. Med. Chem. Lett. 18, 6517 (2008).
- (7) Kanayama, N. et al., Chem. Commun., 47, 2077 (2011).

図 3 アプタザイムを用いるターゲッ ト分子検出の原理.

半導体/生体分子ナノ界面の構築とバイオトランジスタへの応用

前田康弘、松元亮、宮原裕二 東京医科歯科大学生体材料工学研究所

【はじめに】我々はこれまで、電界効果トランジスタ(Field Effect Transistor、FET)原 理に立脚した種々のバイオセンサー開発に取り組んできた。これは、シリコン表面の電荷密 度がゲート絶縁膜近傍の電荷に鋭敏である性質に基づき、ゲート絶縁膜上で様々な分子認識 反応を行わせ、生体分子や細胞の分子電荷の動態を解析するものである。この FET 法は、分 子固有の電荷を直接の検出対象とする全くの非侵襲計測法であり、リアルタイム計測が可能 なこと、レーザーや光学系が不要であるため小型化が容易であること、半導体微細加工技術 による高密度・超並列化が容易に行えるなどの特徴があり、ハイスループットシステム化に おいて求められる要件を網羅したユニークな検出法である。これまでに、FET 原理を利用し た遺伝子配列解析や遺伝子多型解析技術を世界に先駆けて提案・実証してきた。一方、FET 法の欠点の一つに、その短い検出距離制限が挙げられる。これには溶液/ゲート絶縁膜界面 の電気二重層幅(デバイ長、生理的塩濃度で 1nm 程度)が関係している。センシング層とし て抗体分子(約10nm)をゲート絶縁膜表面に固定化した場合、抗原は電気二重層外で抗体と 結合することとなり、結果、抗原-抗体相互作用による表面電位変化は原理的に検出困難とな る。我々のグループでは、上述のようなデバイ長由来の検出制限を克服し、生体分子を高感 度かつ定量的に検出するための「信号変換・伝達素子」たる動的ナノ界面の創出に取り組んで いる。

【研究経過】

<レクチン応答電界効果トランジスタの開発>(領域内共同研究:三浦研)

レクチン-糖(鎖)間の相互作用は極めて特異的な生体分子認識システムの一つであり、ウ ィルスや細菌の感染機構やシグナル伝達増幅などへ寄与することが報告されている。そのた めレクチン類の中には疾病マーカーとして期待されているものもあり、新種の発見と同時に その糖鎖親和性を評価する手法の開発が期待されている。一方、その小さい電荷密度のため タンパク質のFET 検出は一般的に困難である。この問題を解決するためレクチン応答性ゲル の合成およびそのゲルで修飾したFET によるレクチン検出を試みた。レクチンの一種である Con A は生理条件で四量体構造を形成し、4つの糖との複合体を形成する。宮田らはこの性 質に着目し、グルコシド-Con A 複合体を物理架橋点として有するゲルを合成し、外部添加し たグルコースによる複合体解離に伴い膨潤することを報告している。本研究では、逆に、高 分子側鎖(糖)による Con A 補足および物理架橋点化による収縮の可能性に関して検討し、 これをFET による Con A 検出用信号変換素子として応用することを試みた。 α-マンノシド(α Man)含有率
の異なるジメチルアクリルアミ
ドゲルを合成しCon A に対する応
答性を評価した。α Man 含有率の
低いゲル(3mo1%)はCon A 添加
に伴いゲル重量は急激に増加した。一方で高α Man 含有ゲル

(20mo1%)では一時的に重量増加

するものの、最終的には収縮に転 ConA注入時のVr時間変化。(b) ConA濃度に対するVrシフト。 じることを確認した。FET ゲート表面に 20mol% α Man ゲルを光重合形成し、Con A 添加前後 におけるしきい電圧 (Vr) 変化を評価した。Vr は (i) 添加直後急激に上昇し、(ii) 一旦減 少したあと、(iii) 再び上昇するという挙動を示した。Con A は負電荷を帯びていると考え られ (pI=6-7)、重量測定の結果から予測されたゲルの動的挙動(膨潤収縮)と矛盾しない結 果となった。また Con A 濃度 (1, 2, 4 μ M) に応じて Vr 値を変化することも分かった。以上の 結果は、分子応答性ゲル修飾 FET が電荷密度の低いタンパク質検出に有効であるのみならず、 定量評価にも応用できる可能性を示唆している。

<抗原応答電界効果トランジスタの開発> 抗原抗体複合体をゲル架橋点として利用し、特定 の抗原に応答して膨潤する抗原応答性ゲルが宮 田らにより報告されている。本研究ではこのゲル を信号変換素子とする抗原トランジスタの可能 性について検討している。抗原と抗体に重合性官 能基を導入したのち、それらの抗原抗体複合体を 形成させた状態で、アクリルアミド(AAm)との 共重合ゲルを合成し、FETゲート表面に固定した。 抗原添加前後の V_{T} 値変化を評価したところ、AAm ゲルで修飾した FET と同様一旦上昇するものの、

図2 抗原応答電界効果トランジスタによる抗原 検出。4mg/mL 抗原注入時の V_T時間変化。(a)抗原 応答ゲル修飾 FET の場合、(b)AAm ゲル修飾 FET の場合。

その後減少に転じ最終的に負になることが分かった。これは流入した抗原のため複合体が解離し、ゲルが膨潤したことに由来する。これら結果は、抗原応答性ゲルで修飾した FET がゲルの膨潤度変化を利用することで、タンパク質抗原の検出を行うことができたことを示している。

【参考文献】

- [1] A. Matsumoto, N. Sato, T. Sakata, R. Yoshida, K. Kataoka, Y. Miyahara, Adv. Mat., 21, 4372 (2009).
- [2] A. Matsumoto, T. Endo, R. Yoshida, and Y. Miyahara, Chem. Comm., 37, 5609 (2009).
- [3] Y. Maeda, A. Matsumoto, Y. Miura, and Y. Miyahara, Nanoscale Res Lett, 7, 108 (2012).

ベタインポリマー固定化界面による細胞ローリングカラムの開発

〇馬原 淳¹・陳 顥¹・アグデロ カルロス¹・北野 博巳²・山岡 哲二¹
1 国立循環器病研究センター研究所 生体医工学部
2 富山大学大学院 理工学研究部

【緒言】細胞ローリング現象とは、細胞表面と固定化されたリガンドとの間で起こるダイナ ミックな現象の1つである。これまでに我々は、この現象を模倣した新たな細胞分離手法と して細胞ローリングカラムを開発した。細胞ローリング速度は、細胞表面のマーカー分子と 固定化されたリガンド分子との特異的な相互作用によって変化することから、ローリング速 度によって識別・分離される細胞は表面マーカー分子の種類やその密度が異なる。これまで に分離細胞の表面マーカー密度とその分化能について検討し、細胞表面マーカーの発現密度 により細胞が分離されること、分離細胞の分化能はマーカー発現密度に依存して異なること を明らかとした¹。しかし一方で固定化リガンドと細胞表面との非特異的な相互作用による細 胞ローリングの阻害も認められ、細胞表面分子の特異的な相互作の誘起は、分離精度の向上 において重要な問題である。本研究では、ガラスキャピラリー界面に対してポリアクリル酸 のグラフト鎖を導入した界面と、原子移動ラジカル重合法によりスルホプロピルベタイン界 面を構築し、細胞ローリングにおける非特異的な細胞吸着挙動の違いを高速度カメラにより 比較した。さらに、抗体固定化スルホプロピルベタイン界面において分離された脂肪組織由 来間葉系幹細胞(ADSC)の分離挙動についても検討した。

【実験】内径 0.5mm、長さ 12cm のガラスキャピラリ ー内腔に対してシランカップリング剤により開始剤 を導入し、3-sulfo-N, N-dimethyl-N-(2'-methacryl oyloxyethyl)propanaminium inner salt (SPB) を ATRP により重合した。反応をトレースするために、 X 線光電子分光法(XPS)ならびに水接触角測定で評 価した。次いで、ガラスキャピラリー内部での細胞 ローリング挙動を観察するために、キャピラリーを 顕微鏡下に設置し、高速度カメラにより細胞が流れ る様子をリアルタイムでモニターした。

【結果と考察】ポリアクリル酸のグラフト鎖を導入した 界面では、細胞を注入することで、多くの細胞が界面に 吸着している様子が示された(Figure 1)。一方、スルホ プロピルベタインを導入した界面では、細胞が吸着する ことなく流れる様子が観察された。タンパクの非特異吸 着を抑制する界面を用いることで、動的に相互作用する 界面において細胞表面とリガンドとの非特的吸着反応を 抑制することができた。

スルホプロピルベタイン界面に抗体を固定化して、流 れる速度と溶出プロファイルを評価した(Figure 2)。溶 出時間の遅いフラクションにおいては、界面において細

Figure 1 Photographs of the control columns immediately after cell rolling. A, polyacrylic acid-Amino-EtOH graft column. B. Polysulfobetain modified column. Ellipses indicate the cells attached on the column.

Figure 2 Elution profile and cell rolling speed (mm/sec) on the antiCD90 antibody immobilized column (at distance D=8 cm, n=80), ADSC was separated on the antiCD90 antibody modified column

胞がローリングしている様子が観察され、ローリング速度が 1/10 程度まで異なる細胞フラク ションを分離することができた。

【結語】 以上の結果より、ベタインポリマーで界面を修飾することで、細胞の非特異吸着 を抑制し特異的な細胞ローリングを誘起し発現密度により細胞を分離することに成功した。

【参考文献】

1. Mahara A and Yamaoka T, Continuous separation of cells of high osteoblastic differentiation potential from mesenchymal stem cells on an antibody-immobilized column. Biomaterials, 2010, 31: 4231-4237.

ヤヌス粒子の界面吸着現象を利用した分散系の安定化

藤井 秀司'、横山 雄一'、中村 吉伸'、遊佐 真一², 伊東 聖訓'

¹大阪工大工·²兵庫県立大

【緒言】

双面を有する異方性微粒子はJanus粒子と呼ばれ、電子ペーパー表示材料、乳化剤として利用 可能であることから、近年注目を集めている^{1,2)}。しかし、これまでに使用されているJanus 粒子は、ナノメートル~サブミクロンメートルサイズのものが多く、光学顕微鏡を用いた湿 潤状態での観察が困難であった。本研究では、光学顕微鏡観察が容易であるミクロンメート ルサイズのシリカ粒子を金で真空蒸着することで、半球が金で覆われた金-シリカJanus粒子の 合成を行った。さらに合成したJanus粒子を乳化剤として用いてピッカリングエマルションを 作製し、湿潤状態でのエマルションの構造評価、および安定性について検討を行った。

【実験方法】

ガラス基板上に作製した2次元シリカコロイド結晶に対し、真空蒸着装置を用いて100 nmの 厚みの金を真空蒸着した。次いで、イオン交換水中で超音波を照射し、ガラス基板から Janus 粒子を剥離した。次に、2 mL サンプル管に金-シリカ Janus 粒子の水分散体(1 wt%)と n-ドデ カンを体積比 10:1 の比率で導入し、タッチミキサーで1分間攪拌することでエマルションを

作製した。また、シリカ粒子を用いた系でも同様の操作を 行い、安定性を比較するため両系を1週間静置した。さら に、Janus 粒子およびシリカ粒子の油水界面における吸着エ ネルギーの比較を行った。

【結果と考察】

金蒸着後、サンプルの光学顕微鏡観察を行ったところ、半 球が黒色(金面)、もう半球が無色(シリカ面)の異方性を有す る Janus 粒子の生成を確認した(Fig. 1)。乳化剤として Janus 粒子およびシリカ粒子を用いてエマルションを作製したと ころ、Janus 粒子の系ではエマルションが1週間以上安定に

Fig. 1 Optical microscopy images of Au-silica Janus particles dispersed in aqueous medium.

存在したが(Fig. 2)、シリカ粒子の系 では、2 時間後に完全に解乳化した。 これは、金-シリカ Janus 粒子の方が シリカ粒子よりも油水界面に強く吸 着しているためであると考えられる。 Janus 粒子およびシリカ粒子の油水 界面での吸着エネルギーの比較を行 った結果、Janus 粒子の方がシリカ粒 子よりも約 2000 倍高いことが明ら かになった。

Fig. 2 'Pickering-type' emulsion stabilized with Au-silica Janus particles.

【参考文献】

1) N. K. Sheridon, M. A. Berkovitz, Proc. SID, 1977, 18, 289.

2) A. Walth, A. H. E. Müller, Soft Matter, 2008, 4, 663.

Head-to-Head および Head-to-Tail 型連結様式を有する 環状ステレオブロックポリ乳酸の合成と特性評価

〇菅井直人·山本拓矢·手塚育志 東京工業大学大学院理工学研究科 有機·高分子物質専攻

【諸言】

生体高分子において、「かたち」と「主 鎖の方向」は機能性の発現に重要な役 割を果たしている。 例えば、環状 DNA は 直 鎖 状 DNA と 比 べて RNA との 結合 が弱まることから[1]、この現象を利用 してモルフォリノに環状構造を導入 することにより、相補的な RNA との 結合を阻害することで遺伝子発現を 制御した事例が報告されている^[2]。こ れは、高分子の「かたち」を利用した 機能性の制御である。また、「主鎖の 方向性|が重要な役割を果たしている 例としてとしては、DNA の逆平行二 重らせんが挙げられる。このように、 生体高分子に見られる「かたち」や「主 鎖の方向」による相互作用の制御を模 倣することができれば、スマートマテ リアルへの応用が期待できる。

そこで本研究では、光学異性体の主 鎖間で特異的な相互作用を有するポ リ乳酸(PLA)を用い、高分子の「かた ち」および「主鎖の方向」が相互作用 Scheme 1. Synthetic Scheme of Cyclic homo-PLAs and Cyclic Stereoblock PLAs with the HH and HT Linking Orientations of the Enantiomeric Segments

に与える影響を調査した。すなわち、ポリ-L-乳酸(PLLA)およびポリ-D-乳酸(PDLA)間でステ レオコンプレックス(sc)結晶を形成することから、環状ホモ PLLA(**2a**)、PDLA(**2b**)、および head-to-head(HH)型(**4a**)、head-to-tail(HT)型(**4b**)の連結様式を持つ環状ステレオブロック PLA (sbPLA)を合成し、DSC を用いた融点測定により、環と直鎖といった主鎖の「かたち」および HH と HT といった「主鎖の方向」が PLAsc の熱的性質に与える影響を検討した^[3]。

【実験・結果】

エテニル基またはエチニル基を有するアルコールを開始剤としたラクチドの開環重合後、得られたプレポリマーのアルコール末端にエステル化を用いて各種官能基を導入し、テレケリクスプレポリマー1a-eを得た(Scheme 1)。続いて、両末端にエテニル基を有する PLLA(1a)および PDLA(1c)の閉環メタセシス反応を Grubbs catalyst 1st generation 存在下、CH₂Cl₂中希釈条件で行った^[4]。生成物の SEC、¹H NMR および MALDI-TOF MS 測定結果から、数平均分子量3000 程度の環状ホモ PLLA (2a)および PDLA (2b)の合成が確認された。また、末端にエテニル基とアジ基を有する PLLA(1b)およびエテニル基とエチニル基を有する PDLA(1d, 1e)を用いたクリックケミストリーによる連結反応を行い、プレポリマーの組み合わせを変えること

でHH型(3a)およびHT型(3b)の連結様式を持つ直鎖状 sbPLA を合成した。続いて、3a および 3b の環化反応 をホモ PLA の合成と同様に行い、数平均分子量 6000 程度のHH およびHT型の環状 sbPLA4a および 4b を 合成した。

PLA のトポロジーおよび連結様式が、熱的性質に与 える影響を調べるために各ポリマーおよびブレンドの DSC 測定を行った。ホモ PLLA の融点は、環化前後で 4°C 減少した(**1a**: 151°C→**2a**:147°C, Figures 1a and 1b)。 直鎖状 PLLA/PDLA(1a/1c)ブレンドの融点は、従来知 られているように sc の形成により 60℃ 以上上昇した (**1a/1c**: 214°C, Figure 1c) 。 一 方 、 環 状 PLLA/PDLA(2a/2b)ブレンドの融点は 180°C であり (Figure 1d)、直鎖状 PLA ブレンド(1a/1c)から得られる SC より約 30℃ も低い値を示した。さらに、直鎖状 PLLA/環状 PDLA(1a/2b)ブレンドの融点は 187°C を示 し(Figure 1e)、直鎖状同士から得られるscよりも低く、 環状同士から得られる sc よりも高い値を示した。ここ から、環状構造の導入に伴い、高分子主鎖間の相互作 用が阻害された結果、生成する sc の融点が低下したこ とが示唆された。

続いて sbPLA の DSC 測定を行った。HH 型の sbPLA では、環化前後での融点が 15°C 上昇したが(**2a**: 206°C →**3a**: 211°C)、HT 型では 5°C 低下した(**2a**: 213°C→**3a**: 208°C)。これは、HH 型の環状 sbPLA**3a** では PLLA 鎖 と PDLA 鎖が並行に配列したエネルギー的に最安定で ある parallel sc が形成される一方、HT 型の環状 sbPLA**3b** では環状構造の導入により PLLA 鎖と PDLA 鎖が逆並行とならざるを得ず、antiparallel などのエネ ルギー的に不利な sc が形成されたことを示唆してお り、主鎖方向の制御に伴う高分子間の相互作用の制御 が期待される。

【文献】

[1] Tang, X.; Su, M.; Yu, L.; Lv, C.; Wang, J.; Li, Z. *Nucleic Acids Res.* **2010**, *38*, 3848-3855.

[2] Yamazoe, S.; Shestopalov, I. A.; Provost, E.; Leach, S.

D.; Chen, J.K. Angew. Chem. Int. Ed. 2012, 51, ASAP.

[3] Sugai. N.; Yamamoto, T.; Tezuka, Y. *ACS Macro Lett.* **2012**, *1*, in press.

[4] Tezuka, Y.; Komiya, R. *Macromolecules* **2002**, *35*, 8667-8669.

$T_{m} = 151 °C$ $T_{m} = 151 °C$ $T_{m} = 147 °C$ (b) Cyclic PLLA(2a) $T_{m} = 147 °C$

(a) Linear PLLA(1a)

120 130 140 150 160 170 180 190 200 210 220 Temperature (°C)

(d) Cyclic PLLA/Cyclic PDLA blend (2a/2b) $T_m = 180 \ ^{\circ}C$

(e) Linear PLLA/Cyclic PDLA blend (1a/2b) $T_m = 187 \text{ °C}$

Figure 1. DSC thermograms of individual homopolymers (1a and 2a) and blends (1a/1c, 2a/2b and 1a/2b) during 1st heating

糖を側鎖結合した星形ポリマーとレクチンの相互作用

遊佐真一¹、伊東聖訓¹、石原一彦²、金田勇³、Françoise M. Winnik⁴ ¹兵庫県大院工、²東大院工、³酪農大院酪農、⁴モントリオール大

レクチンと呼ばれるタンパク質は糖を認識して特異的に結合することが知られている。本 研究では、水溶性で生体適合性を示すホスホリルコリン基を側鎖結合したブロック (PMPC)

と糖を側鎖結合したブロック(PMLA)からなる星型ジブロック共重合体 (4-P(MPC-MLA))を原子移動ラジカル重合(ATRP)法で合成することを目的とする。この星型ジブロック共重合体の水溶液にレクチンの一種であるRCA₁₂₀を添加するとPMLA側鎖の糖とRCA₁₂₀間の相互作用で会合体を形成すると考えられる

(Figure 1)。さらに、この溶液に単糖を添加するとブロック共重合体とRCA₁₂₀の結合が単糖とRCA₁₂₀の結合に置き換わるため会合体が解離すると期待される。

Figure 1. Chemical structure for star-shaped diblock copolymer and schematic illustration of association behavior of polymer-RCA₁₂₀ complexes.

4-P(MPC-MLA)中に含まれる糖の数とRCA₁₂₀の数の比が250:1となるようにPBSバッファー 中で混合した。また、ポリマー/RCA₁₂₀混合溶液にポリマー中の糖の5倍のモル比の濃度のガ

ラクトースを添加した。これらのPBS バッファー溶液の流体力学的半径 (*R*_h) を動的光散乱 (DLS) 測定により求め た。

4-P(MPC-MLA)の R_h の値は 9.8 nmだ った。RCA₁₂₀と混合した時の R_h は 60.4 nmと増加したため会合体の形成が確 認できた。さらに、会合体の水溶液に ガラクトース水溶液を添加したときの R_h は 9.7 nmとなり、4-P(MPC-MLA)の R_h と近い値だったので会合体の解離が 確認できた。

Figure 2. Hydrodynamic radius (R_h) for (a) 4-P(MPC-MLA), (b) 4-P(MPC-MLA)/RCA₁₂₀ complexes, and (c) 4-P(MPC-MLA)/RCA₁₂₀ complexes in the presence of galactose in PBS buffer solutions.

ポリマー溶解界面の大規模シミュレーション解析

森田裕史

(独) 産業技術総合研究所 ナノシステム研究部門

水やアルコールに接したポリメチルメタクリレート (PMMA) 薄膜における界面の構造につい て、九州大学の田中敬二教授らによって精力的に研究されている。[1] そして、その膨潤界 面等のソフト界面の解析を目的に、粗視化シミュレーションを用いて解析を行ってきた。そ の解析を行う際の1 つの問題点として、界面の面内の揺らぎ等の問題が考えられ、この問題 は、直接シミュレーションサイズの依存性とのかかわりがある。そこで、シミュレーション 解析を行う際のこの問題について検証を行うためには、シミュレーション箱サイズ依存性に ついて検討を行い、各々の規模(サイズ)における信憑性を確かめる必要がある。そこで、 ソフト界面のシミュレーション研究の一環として、散逸粒子動力学法における大規模シミュ レーションについて、検討を行った。

通常、深さ(z)方向については十分に大きなとるようにしていたが、今回は、それ以外の x,y方向のサイズを大きく変える。そこで、最小サイズを10rcとし、そこから、30rc、50rc、 80rcと変えて、シミュレーションを行った。(なお、rcは、シミュレーションの長さの単位) 深さ方向は 40rc あるが、この計算の際には、10rc の場合には、溶媒+ポリマーのすべてを 12000粒子で表しているのに対して、80rc の場合は単純にその 8x8 倍、つまり 768000 粒子の

Fig.1 溶解プロセスシミュレーションの時間 1000τの際のスナップショット。x,y 方向の箱のサイズは、
(a)(b)は 10rc、(c)(d)は 30rc、(e)(f)は 50 rc の結果を示す。なお、rc は、シミュレーションの長さの単位を
表す。

計算となる。このような大規模シミュレーションを行うためには、single cpu 用プログラムを 用いた計算だと数か月経っても計算が終わることがない。そこで、本研究には、北海道大学 情報基盤センターから提供された Intel 製 cpu 用並列版 COGNAC を用いて、シミュレーショ ンを行った。80rc のサイズの場合、8 コアを持ちいた並列化の場合、約 2 週間程度で、1000r 時間分の計算を行うことができ、数か月の計算を5 倍程度高速化できていることがわかった。

今回の計算であるが、ポリマーにおいて、溶ける粒子と溶けない粒子をランダムに重合さ せたポリマーを用いた。この場合、ミクロには溶ける成分が存在することから、部分的には 溶解しやすい状況にあるが、溶けない成分が多く含まれた場合、むしろこの成分の凝集を誘 起する。よって、凝集しやすい溶けない成分を溶けやすい成分が液体との界面に濃縮する双 方の効果によって、界面に揺らぎが生成する。このことから、ソフトな揺らぎのある界面を 作り出すことができると予想される。シミュレーションは、システムサイズ 10rc を用いて、 条件の検証をまず行った。その結果、

Fig.1 に結果のスナップショットを示す。結果として、システムサイズ如何に関わらず、揺らいでいる界面が生成された。小さいシステムサイズの場合には、界面の揺らぎが1周期であるのに対して、50rc 以上の場合には、2 周期程度の揺らぎが見え始めている。このことから、揺らぎの周期がシステムサイズに依存することが示されているが、十分な大きさをとれば、問題がない可能性も並べて示された。

[1] K. Tanaka et al., *Langmuir*, **24**, 296, (2008)

配向化させた「弦状」エレクトロスピン・コラーゲンファイバー足場 での効率的な三次元筋管形成

峯口 竜・田村健一・武田直也 早稲田大学大学院 先進理工学研究科 生命医科学専攻

<緒言>

骨格筋組織は、多数の筋管が高密度に、同一方向に配向した立体的な構造となっている。 この構造は多数の筋芽細胞が一列に連なり筋管を形成することで作られているため、骨格筋 の *in vitro* 再生組織作成のためには三次元的な筋芽細胞の配向制御、ひいては筋管の配向制御 が重要となってくる。しかしながら、従来行われていた二次元のマイクロパターニング基板 や足場材料自体が高密度に集積して足場内部に細胞が入り込みにくい三次元培養足場では、 上記のような三次元組織を作成するのは容易ではない。

そこで本研究では上述のような三次元培養足場として、筋膜に多く含まれる I 型コラーゲンを材料とした無数の配向したコラーゲンファイバーを、エレクトロスピニング法を用いて 作製した。ファイバーの機械的強度と耐水溶性を改善するために、コラーゲンとグルタルア ルデヒドを反応させながら紡糸をする新たな架橋方法を開発し、さらに同一方向に配向させ つつ適度な間隔を保って中空に張られた「弦状」の細胞培養足場を新規に構築した。足場上 への細胞の維持・配向に適するよう、コラーゲン濃度、グルタルアルデヒドの混合比、溶液

の噴出時間、噴出距離、印加電圧などの諸条件を最適化して、ファイバー径はおよそ2μmに制御した。

この弦状の培養場を構成するファイ バーに沿ってマウス筋芽細胞 C2C12 な らびにラット初代筋芽細胞を培養・配 向させ、細胞融合・多核化ならびに筋 管形成を促進し、さらにファイバー間 の空隙にも細胞を入り込ませることに より、高密度に筋管が含まれた三次元 組織の構築を検討した。

Figure 1. (a) 配向化させて、コの字型治具の中空 に「弦状」に固定した I 型コラーゲンの三次元培 養足場。(b) 配向化したコラーゲンファイバーの 位相差顕微鏡像。図中上下方向への配向度は 68%。矢印は平均的なファイバー間隔(6 μm)を 示す。Scale bar 200 μm。

<実験方法>

エレクトロスピニング法により、I型コラーゲンを用いた配向化マイクロファイバーを作製 した。I型コラーゲンを10% w/vで1,1,1,3,3,3-hexafluoro-2-propanol(HFIP)中に溶かし、さら にグルタルアルデヒドを混合して室温で架橋反応を進めながら2 cmの間隙のある二枚の電極 をターゲットとして短時間噴出させ、エレクトロスピニング法で直径がマイクロメータース ケールのファイバーを作製した。二枚の電極間に配向しながら紡糸されたコラーゲンファイ バーは、polydimethylsiloxane (PDMS) 製のコの字型の治具によって回収して中空に三次元に 固定した (Figure 1)。未反応のグルタルアルデヒドは、細胞培養前に細胞培養液に浸しなが ら 37 ℃、5% CO₂の環境下で 24 時間プレインキュベーションを行い不活性化した。

三次元筋管組織構築には、マウス筋芽細胞由来の株化細胞 C2C12 とラット初代筋芽細胞を 用いた。D-MEM + 10% FBS + 1% Ab で培養し、C2C12 については培養足場上で 100%コンフ ルエントになったと判断した時点で D-MEM + 2% HS + 1% Ab の分化誘導培地に置換を行っ た。筋管組織構築の確認は、分化した筋に特異的なマーカーであるミオシン重鎖(MHC) に 対する免疫蛍光染色で行い、形成された筋管の数、大きさ、タイミングなどについても定量 的に評価を行った。

<結果・考察>

グルタルアルデヒド高濃度条件ではファイバーが形成されず低濃度条件では水溶性となる 一方で、I型コラーゲン:グルタルアルデヒド =1:0.2 (w/w) において、水中でも安定に存 在するコラーゲンファイバーが作製できた。グルタルアルデヒドの架橋反応と同時に紡糸し た場合は個々のファイバーが独立して存在し得たのに対し、比較として紡糸後にグルタルア ルデヒド蒸気中で架橋したファイバーは、各ファイバーの一部が溶融したような形状を示し た。これより、紡糸と架橋を同時に行なうファイバー作製法の有用性が強く示唆された。二 枚の電極をターゲットとして短時間噴出させた紡糸により、68%が一方向に配向したコラー ゲンファイバーが得られた (Figure 1b)。

このファイバーを中空固定した弦状培養足場に細胞を播種したところ、C2C12 細胞とラット 初代筋芽細胞のいずれにおいても培養足場への接着・配向が観察された。培養液中での足場 材料のプレインキュベーションにより、細胞毒性は見られなかった。さらに、培養7日後以 降は、ミオシン重鎖抗体染色に対して陽性を示す多核化した筋管組織が形成された。ほぼ全 ての筋管がコラーゲンファイバーの配向方向に沿って伸びており、弦状の新規培養足場によ って筋管の配向を制御できたことが強く示唆された(Figure 2)。

(a) 培養7日間

Figure 2. C2C12 細胞を配向化「弦状」 コラーゲンファイバー足場で培養し構 築した三次元筋管組織の蛍光顕微鏡像。 核:青、MHC 陽性筋管組織:緑。図中 上下方向(矢印方向)に配向したコラー ゲンファイバーに沿って、多核化した筋 管組織が観察され、その数は経時的に増 加した。(a) 培養7日間、(b) 培養 10 日 間。Scale bar 100 μm。

高密度グラフト膜を表面に形成させた金ナノ粒子によるタンパク質検出

折坂雅樹¹・岩﨑泰彦^{1,2}・川崎英也^{1,2}・遊佐真一³ 関西大院工¹・関西大化生工²・兵庫県立大院工³

【緒言】 本研究では還元性と生体適合性 を併せ持つブロックコポリマーを新たに 合成し,このポリマーを利用して,分散性 に優れた金ナノ粒子の調製した。粒径が数 nm~数十nmのナノ粒子は量子サイズ効果 によってバルク体では持ち得なかった特 徴を示すようになる。特に,金や銀ナノ粒 子は表面プラズモン共鳴(SPR)による発色 があり,それぞれ赤,黄を示す。これらの

Fig.1 Schematic representation of gold nanoparticle prepared in this study.

発色はガラスの着色はもとより,最近では組織の染色,妊娠判定キットや糖尿病検査キット などのプローブとしても使用されている。一方,金属ナノ粒子はそれ単体で凝集しやすく, 保護剤を添加し分散安定性を向上させる必要がある。また,金属ナノ粒子の調製方法として は一般的に強力な還元剤を用いるが,近年では環境に配慮して生体分子を還元剤に用いた研 究も盛んに行われている^{1,2}。本研究では,還元剤と保護剤の機能を兼ね備えた新たな両親媒 性ブロックコポリマーを合成し,ポリマー以外の還元剤を使用しない金ナノ粒子の調製を試 みた(Fig.1)。合成したブロックコポリマーは還元剤として機能する疎水性セグメントと両性 イオンを持つ親水性セグメントからなり,水中で会合体を形成する。この会合体の中心部で 金ナノ粒子の前駆体が還元され,その結果,親水性高分子グラフト膜を纏った金ナノ粒子が 得られた。この金ナノ粒子の物性を評価するとともに,金ナノ粒子を用いた溶存タンパク質 の検出も試みたので報告する。

【実験】 所定量の4-シアノ吉草酸ジチオベンゾエート,4-4'-アゾビス(4-シアノ吉草酸), MPCを純水に溶かし,アルゴンで脱気した後75℃で3時間加熱し,可逆的付加開裂型連鎖移 動(RAFT)重合により2-メタクリロイルオキシエチルホスホリルコリン(MPC)ホモポリマー (PMPC)を合成した。これをマクロ連鎖移動剤とし,*N*-メタクリロイル-(L)-チロシンメチル エステル(MAT)をエタノール中でRAFT重合(70℃,15時間)し,ブロックコポリマー (PMPC-*b*-PMAT)を得た。次いでPMPC-*b*-PMATをメタノールに溶解し,エタノールアミン を反応させることにより,末端にチオール基を持つブロックコポリマー(PMPC-*b*-PMAT-SH, Fig.2)を得た。PMPC-*b*-PMAT-SH水溶液に塩化金(III)酸(四水和物)水溶液を加え60℃で2分 間攪拌した後NaOH 水溶液を加え,さらに攪拌した。調製した金ナノ粒子の形態観察を透過 型電子顕微鏡(TEM)により行った。また, 動的光散乱(DLS)測定により金ナノ粒子 のサイズを測定するとともに,粒子の分 散性と媒体のイオン強度の関係も調べた。

タンパク質検出ではグラフト膜にロー ダミン 123 含浸させた金ナノ粒子を調製 し、これを所定濃度のタンパク質溶液に 添加した。

【結果・考察】 合成した PMPC-b-PMAT の分子量は $M_n=1.60\times10^4$ (g/mol) (*M*_w/*M*_n=1.08)であり,¹H NMR より MPC とMATの組成比は9:1(モル分率)だった。 エタノールアミン処理前後のブロックコ ポリマーの分子量に変化はなかった。調 製した金ナノ粒子は紫外・可視分光光度 計測定より SPR 由来の吸収ピークが 523 nm に検出され、DLS 測定よりその粒径 は 60 nm 程度であった。金ナノ粒子の TEM 画像を Fig.3 に示す。この写真から も数十 nm の直径を持つ金ナノ粒子の形 成が確認できた。また、ポリマーブラシ 膜で被覆された金ナノ粒子は、生理的条 件に比べおよそ 100 倍のイオン強度の水 溶液中においても良好な分散性を示した。

ポリマーブラシ膜にローダミン 123 を 含浸させた金ナノ粒子では励起光を照射 してもローダミン 123 由来の蛍光が確認 できなかったのに対し (Fig.4(a)), タン パク質を接触させると, ローダミン 123 由来の蛍光が認められた (Fig.4(b))。

Fig.2 Structure of PMPC-b-PMAT-SH.

Fig.3 TEM micrograph of gold nanoparticle (bar=100nm).

Fig.4 Optical and fluorescence images of aqueous solution containing fluorescent-immobilized gold nanoparticles before (a) and after (b) in contact with albumin.

【参考文献】

- [1] J. Xie et al., J. Am. Chem. Soc., 2009, 131, 888-889.
- [2] M. A. H. Muhammed et al., *Chem. Eur. J.*, **2009**, 15, 10110–10120.

インフルエンザウイルスの

H5 型ヘマグルチニンに結合性を有するペプチドの探索

○郡 遥香·上野 慎士·金子 里枝子·川添 大吾·松原 輝彦·佐藤 智典

(慶應義塾大学理工学部)

1.はじめに インフルエンザは、毎年流行し多くの犠牲者が出ており、2009年には世界的大流 行(パンデミック)が発生し、社会問題となった。現在主にヒトの間で流行しているウイルスは、弱 毒型である H1 および H3 型である。しかし、近年では強毒型である H5 型ウイルスのヒトへ感染と 死亡例が複数報告されており、新たな流行に備えて国レベルでの対応策が練られている。

大流行の原因となる A 型ウイルスの表面には、抗原なり得る 2 つの膜タンパク質、マグルチニン (HA)およびノイラミニダーゼ(NA)が存在する。予防ワクチンではこれらのタンパク質に対する 組み合わせを考慮して準備されるが、A 型ウイルスはその変異が激しく、多くの亜型が存在する事 から、流行を見越したワクチンの準備が必要である。迅速かつ性格にウイルスの亜型を同定する技 術は、臨床現場において予防や治療に有用になると考えられる。A 型ウイルスの感染は、HA が宿主 細胞膜上のシアル酸含有糖鎖に結合することで開始される。そのため糖鎖結合部位は、抗原部位と は異なり、変異が少ない。我々は以前に、H1 および H3 型 HA に特異的に結合し、ウイルス感染を阻 害する 15 残基の D1 ペプチド(GLAMAPSVGHVRQHG)をファージディスプレイ法によって得た(図 1)。本 発表では、高病原性 H5 型を標的とした D1 ペプチドの分子進化を行い、配列の最適化を試みた。

図1 (A) ファージディスプレイ法 (B) ファージディスプレイ法による HA 結合性ペプチドの同定

2. D1 の HA 結合活性評価 ファージ ELISA を行い、D1 の HA 結合活性を評価した(図 2)。WT ファー

ジと比較から、D1ファージはH1、H3 およびH5型HAに対して同程度結合 することがわかった。また、D1ファ ージは濃度依存的に3種類のHAに結 合した。D1がセレクション時に用い たH1およびH3型だけではなく高病 原性H5型の検出にも応用できる可能 性が示された。

3. アラニンスキャニング D1のアミノ酸残基を1つずつアラニンに置換したビオチン化ペプチド13個を合成し、ABC法を用いてH1およびH3型HAに対する結合活性を評価した(アラニンスキャニング)(図3)。D1のN末端側に近いGly1、Leu2、Met4およびArg12をアラニンに置換したペプチドは、D1と比べて結合活性が大きく減少した。このことから、これらのアミノ酸がD1の結合活性に重要な結合モチーフであることが示された。

図3 アラニンスキャニングによる結合モチーフの同定

4. **サブライブラリーを用いたセレクション** アラニンスキャニングの結果を元に、D1 の結合モチ ーフを固定した D1 モチーフ固定ライブラリー(多様性:2.7×10⁷ pfu)とランダムに変異を導入した D1 ランダムライブラリー(多様性:3.6×10⁷ pfu)を用いて、H1 および H3 型に対して親和性選択を

行った。溶出には、シアル酸を有するガングリオ シド GM3 を用いた。セレクション操作を 6 回繰り 返し、得られたファージの HA 結合活性を ELISA で評価した。モチーフ固定ライブラリーからは D1 と同程度の結合活性を持つファージが得られ た。また、ランダムライブラリーからは H1、H3 および H5 型 HA 全てに対して D1 よりも高い結合 活性を持つ配列 D215 が得られた。ビオチン化ペ プチドを化学合成し、SPR 法で結合活性を評価し たところ、解離定数 (K_d 値)より D215 はいずれの 3 種類の HA 亜型に対しても D1 の約 2 倍の結合 活性を示した(図 4)。 **ビオチン化ペプチド**

	TE TE	ジン	
Sec.	***	**	毮 на
	Ť	ĭ K _d (μM)	ř.
Peptides -	H1 ^{*1}	^T K _d (μM) H3 ^{*2}	н5 ^{*3}
Peptides - D1	H1 ^{*1}	ř K _d (μM) H3 ^{*2} 78	H5 ^{*3} 33

図 4 SPR 法を用いた D215 の HA 結合活性評価

5. 今後の予定 ペプチドのウイルス高親和性を目指すため、配列の最適化や分子設計について 検討する。

生体膜類似の糖脂質ナノクラスターの構造および糖鎖認識機能の解析

[○]福田 竜統¹•小島 昂大¹•飯島 一智¹•松原 輝彦¹•山本 直樹²•柳澤 勝彦³•佐藤 智典¹ (¹慶大理エ・²立命館大薬・³長寿医療セ)

1. はじめに

細胞膜上にはスフィンゴ脂質やコレステロールからな るラフトと呼ばれる膜マイクロドメインが存在する。膜 マイクロドメインにはスフィンゴ糖脂質(GSLs)が豊富に 存在し、ガングリオシドがクラスターを形成している。 膜マイクロドメインは細胞・細胞間接着、シグナル伝達、 そして様々な病原性分子の認識に関与している(図1)。

図1 膜マイクロドメインの機能と構造

近年、ガングリオシド Galβ1-3GalNAcβ1-4(Neu5Acα2-3)Galβ1-4Glcβ1-1'Cer (GM1)集合体がアルツハ イマー病の原因タンパク質であるアミロイドβ(Aβ)の重合を促進することが明らかとなった¹⁾。GM1 含有リポソームや老齢マウス脳由来のシナプトソーム(SPS)とインキュベートすることで可溶毒性 Aβがモノマーから凝集体を形成することが報告されている。原子間力顕微鏡(AFM)観察から、Aβ は GM1 を含む SPS ラフト画分との相互作用により直径 30 nm 程度の球状の凝集体を形成すること がこれまでに示されている。この凝集メカニズムを明らかにするために、本発表では SPS および非 シナプトソーム(nSPS)ラフト画分の脂質成分を定性・定量解析した。この結果をもとに、ガングリ オシド GM1、スフィンゴミエリン(SM)、1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine(POPC)、コ レステロール (chol) より形成されるモデル組成を構築し、その人工脂質膜の構造および認識機能 を AFM 観察により解析した。

2. SPS および nSPS のラフト画分の脂質分析

高性能薄層クロマトグラフィー(HPTLC)により、 SPS および nSPS 界面活性剤不溶(DRM)画分中に 含まれる主要な脂質成分を定量した。A β の重合を 促進する GM1 の含有量は SPS と nSPS で大きな 違いは見られなかったが、膜マイクロドメインの 主要な構成成分である chol は nSPS と比較して SPS に豊富に含まれていることが分かった (表1)。

表1 HPTLC による

DRM 画分の脂質組成

	SPS(nmol/mL)	nSPS(nmol/mL)
GM1	0.87	0.62
SM	75.9	85.5
PC	93.1	128.0
chol	54.6	26.0

このことから、GM1 量ではなく GM1 集合体の構造が Aβの重合促進において重要である可能性が 示された。 3. SPS および nSPS ラフト 画分の 糖脂質の分析

高速液体クロマトグラフィー/質量分析 (LC-MS)によりSPSおよびnSPS中の糖脂質を定量した(表2)。どちらのラフト画分中にもGM1 が豊富に含まれていることが分かった。nSPSと 比較して、SPSでは各糖脂質が多く含まれている 傾向があることが分かった。

表2 L	C-MSに、	よる	DRM	画分の	糖脂質	の組成
------	--------	----	-----	-----	-----	-----

	SPS(nmol/mL)	nSPS(nmol/mL)
GM1	0.87	0.62
GM2	0.24	0.13
GM3	0.67	1.05
GD1a	0.18	0.10
GlcCer	0.67	1.05
LacCer	0.18	0.10

4. 生体モデル膜の構造および認識機能解析

定量結果を基に、GM1, SM, POPC, chol から成る SPS および nSPS のモデル組成を構築した。 これらの人工脂質膜における GM1 の状態を調べるために、高密度 GM1 に対して結合能を持つ p3 ペプチド²⁾を用いて AFM 観察を行った(図2)。これまでに表面プラズモン共鳴法や AFM 観察に より、p3ペプチドは SPS 再構成膜に対して有意に結合し、SPS 再構成膜の GM1 クラスターが高 密度で存在していることが示されている。nSPS モデル膜と比較して、SPS モデル膜では p3 ペプ チドの結合が多く観察でき、モデル膜で GM1 集合体の構造の違いを再現できたことが示された。

p3ペプチド(10 µM)の結合の AFM 像

5. 今後の予定

モデル組成の最適化のために、中性糖などの他の糖脂質も含む膜モデルを構築し、構造と機能を 評価する。その人工脂質膜とAβとの相互作用解析を行い、Aβの毒性構造形成に重要な脂質あるい は膜構造の解明を目指す予定である。

¹⁾ K. Yanagisawa, *et al.*, Nat. Med., 2007 ²⁾ T. Matsubara, *et al.*, Langmuir, 2007

平成 24 年度ソフトインターフェースの分子科学

研修コースの概要

研修コース 1「TOF-MS イメージング法」

研修コース2「マイクロコンタクトプリンティング法」

研修コース 3「和周波発生(SFG)分光法」

研修コース 4「X線反射率測定」

研修コース 5「クライオ透過型分析電子顕微鏡(Cryo-TEM)」

研修コース番号	ソフト界面研修コース1
研修名	液体クロマトグラフ質量分析法
開催日時	2012 年 9 月 6 日~7 日
	(6 日)10:00 – 16:00、(7 日)10:00 – 16:00
開催場所	筑波大学長崎研究室
担当者	長崎先生、池田先生
担当者連絡先	nagasaki@nagalabo.jp、ikeda@ims.tsukuba.ac.jp
募集人数	5 名まで
研修内容	高速液体クロマトグラフィーに連結した質量分析法は多数の成分からな
	る分析対象に対してLC でこれらの成分を分離した後、MS により解析を
	行うため、多成分系の定性及び定量解析を行う事ができる。本研修では、
	有機合成反応解析から薬物の動態解析まで幅広い分野でのトレーニング
	を行う。
申し込み期限	2012 年 8 月 10 日

研修コース番号	ソフト界面研修コース2
研修名	ナノインプリンティングによるソフト界面の形状制御と表面濡れ特性評価
開催日時	2012年10月5日10:00-17:00
開催場所	九州大学 高原研究室
担当者	高原先生
担当者連絡先	takahara@cstf.kyushu-u.ac.jp
募集人数	6 名まで
研修内容	ナノインプリンティングは材料表面に微細構造を形成する手法である。この手

	法はバイオセンサーをはじめとする様々なデバイスの作製に利用されている。
	本研修コースではポリ乳酸などの高分子フィルムへのナノインプリントを行い、
	ナノインプリントしたフィルムの表面微細構造の観察、濡れ性の評価を行う。ま
	たソフト界面の構造、物性の評価のための様々な装置の見学も行う。
申し込み期限	2012 年 9 月 14 日

研修コース番号	ソフト界面研修コース4
研修名	和周波発生(SFG)分光法
開催日時	2012 年 11 月 30 日
	(1 日)13:00-17:30
開催場所	物質·材料機構(並木地区)魚崎研究室
担当者	野口先生
担当者連絡先	e-mail:NOGUCHI.HIdenori@nims.go.jp TEL: 029-860-4841
募集人数	10 名程度
研修内容	SFG 分光法は、界面の分子構造を調べるのにとても有用な振動分光法のひと
	っである。本研修コースは昨年と同様、SFG 分光法についての簡単な説明を
	行った後、有機単分子膜や界面水の測定を行う。また、希望者があれば参加
	者の持参したサンプルの測定も行う予定。(ただし、事前に打ち合わせが必要)
申し込み期限	2012 年 11 月 23 日(金)

研修コース番号	ソフト界面研修コース5
研修名	X線反射率測定
開催日時	未定(2012年12月頃を予定)
開催場所	京都大学 松岡研究室
担当者	松岡先生
担当者連絡先	matsuoka@star.polym.kyoto-u.ac.jp
募集人数	3 名まで
研修内容	X線反射率測定は,界面に垂直方向のナノ構造(電子密度プロファイル)
	をÅオーダーの精度,非破壊で調査できる手法であり,概ね1000Å程
	度の深さまで調査できる.本コースでは,主として脂質または高分子の
	水面単分子膜の反射率測定とその解析の実際を体験していただきます.
	なお,固体表面の測定も可能です.参加者持参の試料をお考えの場合は,
	事前にご相談ください.なお,原則として,放射性同位元素等取扱者の
	資格をお持ちであることが条件となりますので、ご留意ください.
--------	--------------------------------
申し込み期限	

研修コース番号	ソフト界面研修コース6
研修名	クライオ透過型分析電子顕微鏡(Cryo-TEM)
開催日時	随時受付
開催場所	東京大学浅野キャンパス内工学部9号館
担当者	岸村先生
担当者連絡先	kishimura@bmw.t.u-tokyo.ac.jp
募集人数	応相談
研修内容	ソフトマテリアル、生体由来サンプルなどの微細構造の直接観察・解析には、
	高い分解能とコントラストを有する透過型電子顕微鏡(TEM)が大変有用であ
	る。本研修コースでは、元素分析、極低温観察、3次元トモグラフィーなどを可
	能とする多機能TEMを使いこなすための基礎講義と、各種測定法のデモ測定
	やトレーニングを行う。受講希望者は、以下の内容で特にどれに興味があるか
	とともに申し込みをお願いしたい(複数回答可;時間の許す限り希望に応じたト
	レーニングを行う)。なお、本研修の修了により、本装置の管理組織・東京大学
	先端ナノ計測ハブ拠点が開催する利用説明会を修了したと認定する。
	1) EDS による元素分析
	2) STEM 観察
	3) エネルギーフィルタの利用;EELS
	4) 3次元トモグラフィーとその画像解析
	5) 凍結試料作製によるクライオ観察
	なお、3)、5)については装置の準備状況次第でのデモとなり、当日は利用説
	明のみの可能性がある。利用希望者は、本研修の受講を勧める。詳細
	<http: jem-2100f.html="" lcnet.t.u-tokyo.ac.jp="" spec=""></http:>
申し込み期限	希望者集まり次第開催

<u>アウトリーチ活動報告</u>

第 14 回 International Association of Colloid and Interface Scientists, Conference (IACIS2012) Sendai Exhibition 開催場所: 仙台市青葉区 仙台国際センター

日時: 2012 年 5 月 14 日~16 日

「ソフトインターフェースの分子科学」では、領域の研究成果やそれに関連する科学技術を一般の国 民に広め、理解してもらうためのアウトリーチ活動を積極的に行っています。去る 2012 年 5 月 13 日~ 18 日に開催された第 14 回 International Association of Colloid and Interface Scientists, Conference (IACIS2012) (於 仙台国際センター(仙台市))国際会議にて、通常の研究成果発表とは別に、本研究領域の学術背

景などを展示ならびに紹介する機会を得ましたので、その様子について今回報告いたします。

IACIS 国際会議はコロイドならびに界面科学分野最大の国際会議で、国内外から非常に多くの研究者 らが期間中来場していました。当研究領域に参画しているメンバーや大学院生も数多く参加し、各自の 研究成果を発信されるとともに、当該分野の研究者との交流を深めていたようです。そのようななか、 学術展示(Sendai Exhibition)は5月14日から16日までの3日間にわたりおこなわれ、当研究領域も展 示ブースを設け、計画班メンバーである高井まどか先生(東京大学)と菊池明彦先生(東京理科大学) らのグループにも出展に協力していただき、領域を代表して活動を行いました。一般市民向けの学術展 示ということでしたので、両先生をはじめ研究室の皆様には日本語を併記したわかりやすいパネルの作 製など展示物の準備にご尽力いただきました。近隣から多くの小学生が校外学習に訪れ最先端の科学技 術とその背景に触れてもらうという絶好の機会でもありましたので、高井先生のグループにはマイクロ チップの体験操作、菊池先生のグループにはPNIPAAm材料の温度応答に関する実演といった工夫を凝 らした企画をしていただきました。理化学研究所のグループからはDNA-金ナノ粒子の展示とその映像に よるデモンストレーションをおこないました。出展期間中は多くの方々に当展示ブースまで足を運んで いただきました。小学生たちには体験型展示に興味を持ってもらえたたようで、実際に手に持ち、操作 し、ものが動いたり、色が変化したりする様子などをつぶさに観察するなど、科学を身近に感じてもら えたようでした。説明員を質問攻めにする子供たちもいて、私たちも大いに刺激を受けました。

(記 藤田雅弘、独立行政法人理化学研究所)

その他のアウトリーチ活動

温度応答性材料のデモンストレーション(大学訪問に来た春日部高校の高校生に対して)[菊池明彦] 日時:2012年5月25日 開催場所:東京理科大学

関連イベント報告

(1)日本化学会年会 特別企画 "ソフト界面を生かした先端化学"
開催場所:慶応大学
日時:2012年3月28日

1. 概要

文部科学省科学研究費補助金 新学術領域研究「ソフトインターフェースの分子科学(ソフト界面)」の主催した日本化学会年会特別企画が、慶応大学で平成24年3月28日に開催されました。公募班若手研究者から、7件の講演がありました。参加者は80名を超え、盛況理に終了いたしました。

2. 特別企画内容

最初に九州大学 三浦佳子より、本特別企画の趣旨の説明が行われました。その後、慶応 大学 栄長泰明先生より、界面への有機分子層の修飾による強磁性ナノ粒子の開発に関す る研究を発表していただきました。次に、産業界より参加していただきました、コニカミ ノルタナノテクノロジーセンターより、彼谷高敏先生より、表面プラズモン励起増強蛍光 分光免疫測定を利用したバイオセンサーについて講演していただきました。彼谷先生から は、産業界のソフト界面に関する考え方や、実際のバイオセンサー実用化における重要点 についてお話しがありました。次に、大阪工業大学 藤井秀司先生より、微粒子の界面挙 動をベースとした、気液分散系の安定化について講演いただきました。次に、埼玉大学 藤 森淳博先生から高分子の界面挙動を利用したフィルムやナノスフィア―作製に関する最新 の研究を発表していただきました。次に、産業技術総合研究所 森田裕史先生より、高分 子の液体界面での挙動に関するシミュレーションについてお話しいただきました。次に、 九州大学 松野寿生先生から、高分子材料の物理化学特性に着目したバイオ材料の創製に 関する研究についてご講演いただきました。最後に、早稲田大学 武田直也先生より、微 細加工した界面を利用した細胞の挙動操作について講演していただきました。どの講演も 日本化学会年会最終日にもかかわらず、多くの聴衆者があり、活発な質疑応答が行われま した。

最後になりましたが、ご多忙にもかかわらずご参加頂きました皆様に厚くお礼申しあげま す。

文責:三浦佳子

九州大学工学研究院化学工学部門

(2) 日本膜学会 第34年会 境界領域シンポジウム
「人工膜と生体膜をつなぐソフト界面の利用」
開催場所:早稲田大学理工学部 大久保キャンパス
日時:2012年5月8日、9日

日本膜学会 第34年会(2012年5月8日(火)、9日(水)、早稲田大学理工学部、大 久保キャンパス)において、境界領域シンポジウム 「人工膜と生体膜をつなぐソフト界 面の利用」が開催された。本境界領域シンポジウムは、オーガナイザーである山口 猛央 先 生(東京工業大学)が、人工膜と生体膜の融合領域研究として、新学術領域研究「ソフト 界面の分子科学」を含む話題をとりあげた企画であった。シンポジウムタイトルに「ソフ ト界面」が入っているのは、その意図を表すものである。

講演は「ソフト界面の分子科学」の領域代表である前田瑞夫先生(理化学研究所)が、ま ず「ソフト界面」の概念を説明され、さらにご自身の研究「DNA がつくるソフト界面の特異 な性質」について講演され、DNA と合成高分子複合体がつくる特異なソフト界面を利用した 様々なセンサーが紹介された。さらに領域研究者である筆者から「生体適合性ポリマー膜 によるバイオインターフェースの創製」というタイトルで、生体膜を模倣した人工のリン 脂質ポリマー膜についての講演を行った。前田先生と私の講演に対する討論を通して、「ソ フト界面」という概念が研究者の間で広く理解されつつあることを実感した。その他の講 演としては、松井 淳先生、宮下 徳治先生(東北大学多元物質科学研究所)から「高分子 ナノシート集積膜による光機能材料創製」、酒井 誠先生、藤井正明先生(東京工業大学 資 源化学研究所)から「振動和周波発生法を利用した赤外超解像顕微鏡の開発と生細胞への 応用」の講演があり、ソフトな人工膜の光機能材料への応用、さらには細胞というソフト な界面を観察する赤外超解像顕微鏡の開発が紹介された。人工膜と生体膜をつなぐソフト な界面という視点から議論ができ、大変有意義な講演会であった。

文責:高井まどか

東京大学大学院工学系研究科 バイオエンジニアリング専攻

(3) 14th International Association of Colloid and Interface Scientists Conference
開催場所:仙台市国際センター
日時:2012年5月13日~18日

第 14 回 IACIS 国際会議(14th International Association of Colloid and Interface Scientists Conference: IACIS2012)が仙台市国際センターにて、2012 年 5 月 13 日~18 日に開催されました。

IACIS はコロイドおよび界面化学の分野の研究者の国際団体であり、主な活動として、国際会議を3年に1度、世界各地でこれまでに13回開催しており、今会議が14回目、日本では24年ぶりになります。

13日の開会式は天皇皇后両陛下の御臨席を賜り行われました(写真1)。東日本大震災後 ながら、世界34カ国から1,000人を超える参加者があり、コロイドおよび界面科学分野、 および関連分野の国内外のトップレベルの研究者が一堂に会し、最新の研究成果の発表と 活発な討論と交流が行え、大変有意義な国際会議でした。

"ソフトインターフェースの分子科学"からは栗原和枝(東北大)が実行委員長として、前 田瑞夫(理研)、高原淳(九州大)、松岡秀樹(京都大)が組織委員として開催、運営に尽力 しました。

なお、会期中に IACIS の総会が開催され、栗原和枝(東北大学)が IACIS の President に 就任しました。

写真1 開会式の様子

文責:栗原和枝

東北大学 多元物質科学研究所ナノ界面化学研究分野

(4) 新学術領域研究合同公開シンポジウム
開催場所:東京大学
日時:2012年7月10日

平成 20 年度にスタートした新学術領域研究(研究領域提案型) に、私たちのソフトインターフェースの分子科学が採択された のち、これまでに、合計 98 の新領域が立ち上がってきました。 人文社会系 4、理工系 36,生物系 44、複合領域 10 領域です。 先日、前田班に続いて 21 年度に立ち上がった「融合マテリア ル:分子制御による材料創成と機能開拓(加藤隆史 領域代表)、 23 年度にスタートした「超高速バイオアセンブラ(新井健生 領 域代表)、および、ナノメディシン分子科学(石原一彦 領域代 表)が、合同公開シンポジウムを開催しました(図は要旨集の

表紙)。領域内での共同研究にとどまらず、領域間の協調と切磋琢磨が、我が国の学術水準 の向上と強化を目指す新学術領域研究の必須の戦略でしょう。

それぞれの領域の研究者や学生が100人以上参加し、クレムソン大学の長冨次郎先生 からは、近年、注目されているメカノトランスダクションに関する興味深い招待講演を伺 うことができました。静水圧刺激による細胞変化の本質がかなり明らかになりつつあると 驚きました。4つの領域からは、それぞれ、長崎幸夫先生(筑波大学)、大槻主税先生(名 古屋大学)、大和雅之先生(東京女子医科大学)、石原一彦先生(東京大学)が、それぞれ の領域の概要とご自身の研究内容について熱く語られました。紙面の都合上、先生方のご 講演の詳細は述べられませんが、新たな分子の制御システムにより全く異なった現象を起 こし、さらにそれを利用するという共通の軸を強く感じるご講演でした。私たちの領域は、

あっという間に最終年度をむかえてい るわけですが、その成果は、他の3つ の関連領域に脈々と生かされていくの だと確信いたしました。

最後に、私ごとで恐縮ですが、立ち 上げ間もないヨタヨタの研究室でござ いましたが、多くの先生方との情報交 換と共同研究の機会を得、大きな活力 を注入して頂きましたことを心より感 謝しております。

文責:山岡哲二 国立循環器病研究センター研究所 生体医工学部

<u>関連イベント情報</u>

●当領域主催の会議

2012年7月26-27日	山形	第八回公開シンポジウム・第九回領域会議			
2012年8月8-9日	東京	第3回ミニシンポジウム:ソフト界面と計測、センシング			
2012 年 11 月 9 日	東京	ソフト界面新技術発表会			
http://www.ims.tsukuba.ac.jp/~nagasaki_lab/nagasaki/sis/softinterface.html					
2013年1月23-24日	東京	第九回公開シンポジウム・第十回領域会議			
2013年7月(予定)	東京	第十回公開シンポジウム			

●関連会議

- 2012 年 9 月 23~28 日@横浜 IUMRS Int'l Conf. on Electronic Materials (IUMRS-ICEM2012) <u>http://iumrs-icem2012.org/index.html</u>
- 2012 年 10 月 9~12 日@筑波 Gelsympo2012 (9th International Gel Symposium)

http://www.ims.tsukuba.ac.jp/~nagasaki_lab/gelsympo/index.html

2012年11月2日 @慶応大学

第6回 多糖の未来フォーラム http://www.bio.keio.ac.jp/labs/sato/tatou_no_mirai6

March 20-22, 2013@Tsukuba

2nd Inter International Conference on Biomaterials Science in Tsukuba (ICBS2013) http://www.ims.tsukuba.ac.jp/~nagasaki_lab/nagasaki/icbs/icbs2013/index.html

ソフトインターフェースの分子科学「新技術発表会」

文部科学省科学研究費補助金新学術領域研究「ソフト界面の分子科学」主催 http://www.ims.tsukuba.ac.jp/~nagasaki_lab/nagasaki/sis/program.pdf

13:00-13:10 領域代表ご挨拶

理研 前田瑞夫

高原 淳

田中睦生

- 13:10-13:30 無機ナノチューブミセル
- 13:30-13:50 新規シラン系表面修飾材料
- 13:50-14:10 フラクタルエラストマー/ゲル
- 14:10-14:30 セルロース触媒
- 14:30-14:50 幹細胞分離システム
- 14:50-15:10 休 憩
- 15:10-15:30 高感度イムノアッセイ用抗体固定化基材
 - 東京大学大学院工学系研究科 高井まどか

九州大学先導物質科学研究所

産業技術総合研究所

山形大学大学院理工学研究科 野々村美宗

東京工業大学大学院工学研究科 芹澤 武

国立循環器病研究センター 山岡哲二

15:30-15:50 生体組織モデル

- 大阪大学大学院工学系研究科 松崎典弥
- 15:50-16:10 タンパク質-ナノ磁性ビーズ複合体
- 東京農工大学大学院 工学研究院 吉野知子
- 16:10-16:30 酵素やタンパク質表面を活用した化学反応制御法の創製 一特に光反応を活用した超分子不斉光反応の創製一

東北大学多元物質科学研究所 和田健彦

16:30-16:50 ブロッキング材の設計

筑波大学数理物質系 長崎幸夫

16:50-17:00 事務連絡・閉会

- 筑波大学数理物質系 長崎幸夫
- 日時: 2012年11月9日(金) 13:00~17:00

場 所: 山上会館2階大会議室 http://www.sanjo.nc.u-tokyo.ac.jp/sanjo/ 所在地:〒113-8654 東京都文京区本郷 7-3-1

<u>新聞・報道等(2012年4月~7月)</u>

◆研究成果トピックス「DNA 折り紙法の活用によるナノメカニカルデバイスの構築」の記事が、科研費 NEWS レター2012VOL.1に掲載されました。 葛谷明紀(関西大学)

班員および若手研究者の奨励賞等

日付	受賞·報道名	受賞·報道者	タイトル	団体
2011.10.24	NNT2011, Best Poster Awards	安井力、田和圭子、細川千 絵、西井準冶、青田浩幸、松 本昭	Sensitive Fluorescence Microscopic Observation of Neurons Cultured on a Plasmonic Chip	Nanoimprint and Nanoprint Technology (NNT2011)
2012.03.29	第13回「貴金属に関わる研 究助成金」MMS賞	藤井 秀司	再利用可能な磁性ナノコンポジット触 媒粒子の開発	田中貴金属グ ループ
2012.03.30	平成24年度 第一回 電気 化学会女性躍進賞	佐藤 縁	分子認識ソフト界面の構築と膜構造 および機能評価に関する研究	電気化学会
2012.5.14	ポスター賞 (E-MRS (European Materials Research Society) Spring Meeting)	Akira Matsumoto, Kazunori Kataoka, Yuji Miyahara	Noninvasive Cytology Enabled by Sialic Acid Sensitive Field Effect Transistor	E-MRS (European Materials Research Society)
2012.05.24	ー般社団法人日本ゴム協会 第5回CERI若手奨励賞	森田裕史	シミュレーションを用いたソフトマテリ アルのガラス転移温度の解析	一般社団法人日 本ゴム協会
2012.6.12	若手研究奨励賞優秀賞 (YIA)	馬原 淳・Kristi Kiick・山岡哲 二	エラスチン様ポリペプチドハイドロゲル からなる小口径人工血管の開発	再生医療学会
2012.6.23	最優秀ポスター賞	Magdalena Hałupka-Bryl, Kei Asai, Sindhu Thangavel, Magdalena Bednarowicz, Bernadeta Dobosz, Ryszard Krzyminiewski, Yukio Nagasaki	PEG-modified iron oxide nanoparticles as potential magnetic drug delivery system	2nd Nanosymposium on Nanomaterials Organizational Summary, Poznan, Poland
2012.6.25	第41回医用高分子シンポジ ウム学生奨励ポスター発表 優秀賞	染川将太·馬原淳·増谷一 成·木村良晴·山岡哲二	温度応答性を有する生分解性ハイド ロゲルを用いた心筋梗塞治療効果の 検討	高分子学会医用 高分子研究会
2012.07.13	第58回高分子研究発表会 [神戸] ヤングサイエンティス ト賞	藤井 秀司	高分子微粒子の界面吸着現象を利用 した気液分散体の安定化	高分子学会

「ソフトインターフェースの分子科学」News Letter Vol. 10

発 行 日	2012 年 8 月 7 日 発行
発行責任者	前田 瑞夫 (理化学研究所)
編集責任者	高井まどか (東京大学大学院)
製 作	株式会社ジェイテックスマネジメントセンター

〒162-0825 東京都新宿区神楽坂 1-2 03-3235-8681(代)

文部科学省科学研究費補助金 新学術領域研究(領域提案型) 「ソフト界面」総括班

http://www.riken.jp/soft-kaimen/

新学術領域研究ソフトインターフェースの分子科学運営事務局

softinterface@nagalabo.jp