センター長メッセージ

計算科学研究センター
センター長 松岡 彰

理化学研究所 計算科学研究センター（R-CCS）は、スーパーコンピュータを中心とした高性能な「計算」を基に、科学者自身を「計算の科学」を探究し、それによって得られる新たな計算パワーを様々な科学分野の問題解決に活用してそれらの発展に寄与する「計算による科学」を推進し、更には社会の高度化に資する他の科学分野の発展である「計算のための科学」を推進することとした exceededが国際規範の研究センターとして活動することを目的としています。

計算科学は様々な手法を使って、過去から未来へ、また理論から実験へ、世界的な事象を計算することによって計算の分野で再構築し、人類の重要な問題の解決にチャレンジすることを可能にします。例えば、現象を物理の方程式で表し、それを解くことによって現象を再現する「シミュレーション」は、様々な観測データを分析してその値を基に仮想の予測に繋げる「データサイエンス」が、さらにはそれらのデータを学習し、高度な推論によって現象の本質を捉える「人工知能」などが発展します。スーパーコンピュータは、これら全てを数桁から数きりまで短時間で試行・廃稿とも兼ね備え、世の中の新たな高い難問の解決に適用され、社会に革新的な成果をもたらすことが可能で、センターはそれらの最先端の研究を行うことを使命としています。

同時に、スーパーコンピュータの進化のため研究開発される新しい技術は、IT分野全体を変化させる最先端かつ絶対的な技術として広く影響力を伴うことが必要です。特にクラウドからエッジを中心とした何かの「インタフェース全体の変化に大きく寄与し、国際生活を支える」という前提に役立つことが期待されます。センターは、そのような「変化を制御する世界の中心的センターとして、国内外の機関と連携し、研究開発を促進しています。

我々が今回開始したスーパーコンピュータ「碧風」は、まさにそのようなように研究活動を開始したものですで、2020年4月に初のスーパーコンピュータ部門で世界一となり、かつ、一年前後だけの期間を開始し、新型コロナウイルスの治疗体制開発も含め、無事に実現し、多様な研究発展を支えることに成功しました。今後も「碧風」とそのシステムの高精度化と普及に努めるとともに、更なる次世代の計算力を用いるための「科学」を創って研究を推進します。
R-CCSのミッション

ハイパフォーマンス・コンピューティングでは、科学と社会を支える基盤技術を創出することを目指しています。R-CCSは、「科学的計算と言語のための科学」を実現するための技術を提供します。

計算科学とデータ科学の融合

計算科学とデータ科学の融合は、科学研究の新しい形を創出する重要なキーテクノロジーです。データ科学は、大量のデータを解析し、科学仮説を検証するためのツールとして、計算科学と同様に重要な地位を占めています。この融合により、科学研究をより効率的・効果的に行うことが可能となります。

「計算の科学とデータ科学のための科学」

科学と計算の融合により、新しい科学理念や手法が開拓されます。これにより、科学的思考が進化し、科学的な知識がより一層豊かになります。R-CCSは、この科学的融合を推進し、未来の科学技術を創出することを目指しています。

SDGsに示されたような、世界を支える基盤技術の創出と実現を目的に、R-CCSは、SDGs達成のための科学技術の創出と実現を目指しています。これにより、科学技術の発展がさらに加速され、世界の持続可能な発展を支えることができるようになります。

R-CSSの活動

R-CSSは、科学技術の創出と実現を目指すため、以下の活動を行っています。

1. 新しいコンピューティング技術の開発：R-CSSは、新しいコンピューティング技術の開発を目指し、高性能計算、量子コンピューティング、人工知能などの分野で研究開発を行っています。

2. 学術的交流：R-CSSは、学術的な交流を通じて、国内外の科学技術者と意見交換を行い、日本の科学技術の発展に寄与しています。

3. 産業界との連携：R-CSSは、産業界と連携し、科学技術の応用を促進し、社会貢献を図っています。

これらの活動を通じて、R-CSSは、科学技術の創出と実現を目指すための活動を行っています。
「富岳」とは

世界最高の成果を目指すスーパーコンピュータ「富岳」は「普通」なのに高性能

「富岳」は、我々が夢を追い求めることができる高性能コンピュータの存在です。2021年に登場した「富岳」は、Society 5.0の実現に不可欠な技術であり、科学技術の発展や社会の進歩を支える役割を持っています。

Society 5.0の実現に不可欠な「富岳」

『富岳』は、閉じ込められた知識を活用した社会実験を推進するためのツールであり、様々な分野の研究を支援しています。特に、ヘルスケア産業やエネルギー産業、自動運転など、社会の多様化に対応するための技術開発が進められています。

世界最高水準の成果を目指すためのCo-design(コデザイン)

スーパーコンピュータの開発というハードウェアの競争に走りながらも、ソフトウェアの性能を最適化するためには、ハードウェアとソフトウェアの組み合わせが不可欠です。このため、Co-design(コデザイン)という手法を採用し、超巨大規模のデータを処理する必要があるため、システム設計にあたっては、ハードウェアとソフトウェアの密接な連携が求められます。

「富岳」の特徴は「普通で高性能」

「富岳」は、これまでのコンピュータと異なり、通常のコンピュータでの作業に匹敵する処理速度を実現しています。また、ソフトウェアの性能を最適化するため、ハードウェアの性能を最大限に活用する設計がなされています。

「富岳」の名の由来

「富岳」の名は、富士山の名を冠しています。富士山は、自然の美しさと科学技術の進歩を象徴する存在であり、その名が与えられたことが非常に象徴的です。
「富岳」で目指すこと
未来社会全体を予測し、Society 5.0の課題解決と価値創造に貢献します

「富岳」は世界最高峰のHPCインフラとしてシミュレーション・ビッグデータ解析・AIを融合しSociety 5.0の実現可能性を検証します

IoTにより全世界から収集された大量のデータをもとに、サイバー空間にシミュレーションが織りまぜられ、より快適な生活を生み出すためのステージが実現的に世界に現われる（サイバー・ファイナル・エフェクト）。Society 5.0を実現するには、時代を駆けめ渡るその実現性を模擬できる「富岳」のような技術的な計算能力とソフトウェア技術で実現される。その実現性を模擬できる「富岳」のような技術的な計算能力とソフトウェア技術で実現される。

「富岳」はさらに、サイバー空間上でこれまでの実現を模擬できる「富岳」のような技術的な計算能力とソフトウェア技術で実現される。

データサイエンス

生体データの活用による健康診断と効率的な薬剤

スマートシティ

住みやすい社会の実現

もとづかい

変革がもたらす新価値、新価格の価値観

変革

災害観を基に、個別の避難指示と無人配達で減災力を向上

エネルギー

地熱活用による電力供給のためのエネルギー効率の革新

そして、すべての人がそれぞれの想像力・創造力を発揮して活躍し、社会の課題解決と価値創造を図り、自然と共生しながら持続可能な発展を遂げる「Society 5.0」実現に貢献します。
総ノード数

「富岳」の総ノード数は158,876（432ラック）

ノード特性

ノードの構成は以下の通りです。

- **CPU**
 - 384ノードで構成
 - CPUタイプ: Intel Xeon E5-2690v4
 - CPU内核数: 18
 - クロック周波数: 2.60GHz

- **NoC（ネットワークオンチップ）**
 - 24ポート

- **ネットワーク**
 - InfiniBand: 384ポート
 - Ethernet: 24ポート

- **メモリ**
 - 64GB

- **ディスクストレージ**
 - 48TB

- **ファームウェア**
 - CentOS 7.6

- **システムマネージメント**
 - Linux Cluster Tools

総理論性能

富岳は、16ノード（1ノードあたり217TFLOPS）の理論性能を実現しています。

ノード単体の性能は以下の通りです。

- **CPU**
 - Xeon E5-2690v4
 - クロック周波数: 2.60GHz
 - 内核数: 18

- **メモリ**
 - 64GB

Tofu Interconnect D

Tofu Interconnect Dは、計算ノード間ネットワークに使用され、RDMA（Remote Direct Memory Access）を対象としています。

- **帯域幅**: 1.35GB/s (16GB/s x 1)
- **帯域幅**: 10.15GB/s (64GB/s x 4)

ストレージ

ストレージの構成は以下の通りです。

- **HDD**: 12TB (80TB x 1)
- **SSD**: 48TB (80TB x 1)
- **_nvMe**: 48TB (80TB x 1)
「富岳」の利用方法

みんなで使うスーパーコンピュータ「富岳」

「富岳」の利用にあたっては観点論考が必要で、各機関が利用
促進に関心深いことから、各機関が利用促進に関する情報
を公開しています。お知らせについても、各機関が利用
促進に関する情報を公開しています。

大まかな「富岳」利用の流れ

利用申請
- 試験利用申請の選択
- 対象機会の選択
- HPC利用の利用
- 試験申請書の作成、提出

選定結果の承認
- 試験利用者及び連絡責任者への
- 連絡結果メールで通知

課題実施に伴う手続き
- 新旧変更情報の確認、課題への
- 資料に関する相談、確認
- 利用開始の実施

利用開始
- 利用開始
- 利用要件、利用期間、利用時間
- 順番にセミナー

課題の終了
- 利用報告書の提出
- 留意事項
- 成果報告書および発表
- 成果発表データベースへの登録

人材育成

R-CCSは、日本の計算科学技術の発展に中心的な役割を担っており、この活動を通じて得た先端的な技術・知見を積極的に活用し、関連機関と連携して計算科学技術を支える人材の育成を推進しています。

大学院生、研究者、企業技術者等を対象とした人材育成事業や、中小企業、高校生など若年層を対象とした啓発活動を通じて、「計算学術および計算科学技術の連携・融合を図る人材の育成」、「高度な計算科学技術を使いこなせる人材の育成」、「業界界をはじめとした高度な計算科学技術の利用者広域に寄与する人材の育成」をめざしています。

インターン環境プログラム

海外機関の先進的な技術を活用する学生を対象にした国際インターンシップも、日本国内の機関に所属する学生を対象とした国内インターンシップも実施しています。

https://www.rcs.riken.jp/about/career/internship/

スクール、ワークショップ

学生や若手研究者等を対象に、講演を
含む講演・ワークショップを設けた
ワークショップを実施しています。

https://www.rcs.riken.jp/about/career/workshops/

大学院生、研究者、企業技術者等を対象とした人材育成事業や、中小企業、高校生など若年層を対象とした啓発活動を通じて。「計算学術および計算科学技術の連携・融合を図る人材の育成」、「高度な計算科学技術を使いこなせる人材の育成」、「業界界をはじめとした高度な計算科学技術の利用者広域に寄与する人材の育成」をめざしています。

ソラノ学園、東北大学にR-CCS研究員により連携講義を実施しています。

https://www.rcs.riken.jp/about/career/joint/grad/

計算科学eラーニング

R-CCSは、学術機関が行ったスクール、シンポジウム等の講義制度及び講義資料を掲載しています。

「計算科学eラーニング」は、計算科学・計算機科学について、関心のある方や学習を深めたいと考える方向けのページです。

R-CCSは、計算科学eラーニング、シンポジウム等の講義
著作権および講義資料を権利換しやすく検討しています。なお、各
コンテンツ（講義の所属、実施機関等）の名称は、講義、講演、
シンポジウム等関連機会のものです。

https://www.rcs.riken.jp/about/career/elearning/
アクセス

神戸地区
〒650-0047 兵庫県神戸市中央区港南町7-1-26

東京地区（東京分室）
〒103-0027 東京都中央区日本橋1-4-1 日本橋一丁目三井ビルディング15階

公共交通機関でお越しの場合

各駅からのアクセス

【新横浜駅】
JR京浜急行電鉄品川線・東京急行電鉄東京線、新横浜駅に車で約15分で計測科学センター駅に至れます。

【新横浜駅】
JR新横浜駅を出たてに、西横山手線（青電）下車、改札を出て、計測科学センター駅へと約30分です。

公共交通機関でお越しの場合

各駅からのアクセス

【品川駅】
JR東西線、京浜東北線、東海道線、中央線、東京メトロ南北線、都営大江戸線各駅で下車、改札を出て、計測科学センター駅へと約30分です。

【東京駅】
JR東西線、京浜東北線、東海道線、中央線、東京メトロ南北線、都営大江戸線各駅で下車、改札を出て、計測科学センター駅へと約30分です。

公共交通機関でお越しの場合

各駅からのアクセス

【成田空港】
東京メトロ東西線・東京メトロ南北線、都営大江戸線、東京メトロ東西線・東京メトロ南北線、都営大江戸線各駅で下車、改札を出て、計測科学センター駅へと約30分です。

【羽田空港】
東京メトロ東西線・東京メトロ南北線、都営大江戸線、東京メトロ東西線・東京メトロ南北線、都営大江戸線各駅で下車、改札を出て、計測科学センター駅へと約30分です。

公共交通機関でお越しの場合

各駅からのアクセス

【名古屋駅】
名古屋駅を出たてに、西横山手線（青電）下車、改札を出て、計測科学センター駅へと約30分です。

【名古屋駅】
名古屋駅を出たてに、西横山手線（青電）下車、改札を出て、計測科学センター駅へと約30分です。

公共交通機関でお越しの場合

各駅からのアクセス

【名古屋駅】
名古屋駅を出たてに、西横山手線（青電）下車、改札を出て、計測科学センター駅へと約30分です。

【名古屋駅】
名古屋駅を出たてに、西横山手線（青電）下車、改札を出て、計測科学センター駅へと約30分です。