1. Home
  2. 研究室紹介
  3. 革新知能統合研究センター
  4. 汎用基盤技術研究グループ

革新知能統合研究センター 非凸学習理論チーム

チームリーダー 金森 敬文(Ph.D.)


金森 敬文 (Ph.D.)



  • ダイバージェンスによる大規模モデルの統計的推定
  • 敵対的損失による統計的推論の学習理論
  • マルチモーダル情報統合と情報転送学習の展開


  • 情報学


  • 数物系科学
  • 統計科学
  • 応用数学


  • 数理統計学
  • 機械学習


  • 1. H. Sasaki, T Sakai, T. Kanamori.:
    "Robust modal regression with direct gradient approximation of modal regression risk"
    The Conference on Uncertainty in Artificial Intelligence (UAI2020). August 2020
  • 2. M. Uehara, T. Kanamori, T. Takenouchi, T. Matsuda.:
    "A Unified Statistically Efficient Estimation Framework for Unnormalized Models."
    The 23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020).
  • 3. S. Liu, T. Kanamori, W. Jitkrittum, Y. Chen.:
    "Fisher Efficient Inference of Intractable Models."
    The Neural Information Processing Systems (NeurIPS 2019)
  • 4. K. Matsui, W. Kumagai, K. Kanamori, M. Nishikimi, T. Kanamori.:
    "Variable Selection for Nonparametric Learning with Power Series Kernels."
    Neural Computation, 31(8):1718-1750, August 2019.
  • 5. W. Kumagai, T. Kanamori.:
    "Risk Bound of Transfer Learning using Parametric Feature Mapping and Its Application to Sparse Coding."
    Machine learning 108, pp. 1975--2008, May 2019.
  • 6. H. Sasaki, T. Kanamori, A. Hyvarinen, and M. Sugiyama.:
    "Mode-Seeking Clustering and Density Ridge Estimation via Direct Estimation of Density-Derivative-Ratios."
    Journal of Machine Learning Research, Volume 18, Pages, 1--47, April, 2018.
  • 7. T. Takenouchi, T. Kanamori.:
    "Statistical Inference with Unnormalized Discrete Models and Localized Homogeneous Divergences."
    Journal of Machine Learning Research, vol. 18, num. 56, pages 1--26, July 2017.
  • 8. T. Kanamori, T. Takenouchi.:
    "Graph-based Composite Local Bregman Divergences on Discrete Sample Spaces."
    Neural Networks, Volume 95, Pages 44--56, November 2017.
  • 9. T. Kanamori, S. Fujiwara, A. Takeda.:
    "Robustness of Learning Algorithms using Hinge Loss with Outlier Indicators."
    Neural Networks, Volume 94, Pages 173--191, October 2017.
  • 10. K. Matsui, W. Kumagai, T. Kanamori.:
    "Parallel Distributed Block Coordinate Descent Methods based on Pairwise Comparison Oracle."
    Journal of Global Optimization, Volume 69, Issue 1, pp 1--21, September 2017.




金森 敬文


髙梨 耕作


東京都目黒区大岡山2-12-1 W8-46
東京工業大学 情報理工学院 数理・計算科学系
Email: kanamori [at] c.titech.ac.jp