Centers & Labs

RIKEN Center for Advanced Intelligence Project

Mathematical Science Team

Team Leader: Kenichi Bannai (D.Math.Sci)
Kenichi  Bannai(D.Math.Sci)

Mathematical Science Team is a team consisting of pure mathematician and theoretical physisists with aim of attacking mathematical problem arising in artificial intelligence and machine learning.

Research Subjects

  • Machine Learning

Main Research Field


Research Subjects

  • Machine Learning

Selected Publications

Papers with an asterisk(*) are based on research conducted outside of RIKEN.
  1. *Kenichi Bannai, and Shinichi Kobayashi:
    “Integral structures on p-adic Fourier theory”
    Annales de L'Institut Fourier, Vol. 66 no. 2, 521-550 (2016). DOI: 10.5802/aif.3018.
  2. *Kenichi Bannai, Hidekazu Furusho, and Shinichi Kobayashi:
    “p-adic Eisenstein–Kronecker series for CM elliptic curves and the Kronecker limit formulas”
    Nagoya Math. J. 219, 269-302 (2015). DOI: 10.1215/00277630-2891995.
  3. *Kenichi Bannai, and Guido Kings:
    “p-adic Beilinson conjecture for ordinary Hecke motives associated to imaginary quadratic fields”
    RIMS Kôkyûroku Bessatsu B25: Algebraic Number Theory and Related Topics 2009, eds. T. Ichikawa, M. Kida, T. Yamazaki, 9-30 June (2011).
  4. *Kenichi Bannai, and Guido Kings:
    “p-adic elliptic polylogarithm, p-adic Eisenstein series and Katz measure”
    American J. Math. 132 no. 6, 1609-1654 (2010).
  5. *Kenichi Bannai, and Shinichi Kobayashi:
    “Algebraic theta functions and p-adic interpolation of Eisenstein-Kronecker numbers”
    Duke Math. J. 153 no. 2, 229-295 (2010). DOI: 10.1215/00127094-2010-024.
  6. *Kenichi Bannai, Shinichi Kobayashi, and Takeshi Tsuji:
    “On the de Rham and p-adic realizations of the elliptic polylogarithm for CM elliptic curves”
    Annales scientifiques de l'ENS 43, fascicule 2, 185-234 (2010).
  7. *Kenichi Bannai, and Shinichi Kobayashi:
    “Algebraic theta functions and Eisenstein-Kronecker numbers”
    RIMS Kôkyûroku Bessatsu B4: Proceedings of the Symposium on Algebraic Number theory and Related Topics, eds. K. Hashimoto, Y. Nakajima and H. Tsunogai, 63--78 December (2007).
  8. *Kenichi Bannai:
    “On the p-adic realization of elliptic polylogarithms for CM-elliptic curves”
    Duke Math. J. 113, 193-236 (2002). DOI: 10.1215/S0012-7094-02-11321-0.
  9. *Kenichi Bannai:
    “Syntomic cohomology as a p-adic absolute Hodge cohomology”
    Math. Z. 242/3, 443-480 (2002). DOI: 10.1007/s002090100351.
  10. *Kenichi Bannai:
    “Rigid syntomic cohomology and p-adic polylogarithms”
    J. Reine Angew. Math. 529, 205-237 (2000). DOI: 10.1515/crll.2000.097.

Lab Members

Principal Investigator

Kenichi Bannai
Team Leader

Core Members

Tomotaka Kuwahara
Research Scientist
Akiyoshi Sannai
Research Scientist
Akinori Tanaka
Postdoctoral Researcher
Masahiro Ikeda
Postdoctoral Researcher
Yuuki Takai
Postdoctoral Researcher
Kei Hagihara
Postdoctoral Researcher
Isao Ishikawa
Postdoctoral Researcher
Koichi Tojo
Technical Staff I