Centers & Labs

RIKEN Center for Emergent Matter Science

Quantum Electron Device Research Unit

Unit Leader: Michihisa Yamamoto (D.Sci.)
Michihisa  Yamamoto(D.Sci.)

We develop quantum electron devices based on manipulation and transfer of quantum degrees of freedom in solids. We employ quantum electron optics, where quantum states of propagating electrons are manipulated in a single electron unit, and experiments on transfer and manipulation of novel quantum degrees of freedom in atomic-layer materials. These experiments aim to reveal physics of quantum coherence, quantum correlations, and quantum conversions, as guiding principles for quantum electron devices. We also employ state of the art quantum technologies to solve long-standing problems in condensed matter physics from microscopic points of view.

Main Research Field

Mathematical and physical sciences

Related Research Fields

Interdisciplinary science and engineering / Engineering

Keywords

  • Two-dimensional electron system
  • Single electron manipulation
  • Nano device
  • Quantum coherence
  • Quantum correlation

Selected Publications

Papers with an asterisk(*) are based on research conducted outside of RIKEN.
  1. Edlbauer, H., Takada, S., Roussely, G., Yamamoto, M., Tarucha, S., Ludwig, D., Wieck, A. D., Meunier, T., and Bäuerle, C.:
    “Non-universal transmission phase behaviour of a large quantum dot”
    Nature Communications 8, 1710 (2017).
  2. *Takada, S., Yamamoto, M., Bäuerle, C., Ludwig, A., Wieck, A. D., and Tarucha, S.:
    “Mesoscopic phase behavior in a quantum dot around crossover between single-level and multilevel transport regimes”
    Phys. Rev. B 95, 241301 (RC) (2017).
  3. *Amet, F., Ke, C. T., Borzenets, I. V., Wang, Y-M., Watanabe, K., Taniguchi, T., Deacon, R. S., Yamamoto, M., Bomze, Y., Tarucha, and S., Finkelstein, G.:
    “Supercurrent in the quantum Hall regime”
    Science 382, 966-969 (2016).
  4. *Bertrand, B., Hermelin, S., Takada, S., Yamamoto, M., Tarucha, S., Ludwig, A., Wieck, A. D., Bäuerle, C., and Meunier, T.:
    “Fast spin information transfer between distant quantum dots using individual electrons”
    Nature Nanotechnology 11, 672-676 (2016).
  5. *Shimazaki, Y., Yamamoto, M., Borzenets, I. V., Watanabe, K., Taniguchi, T., and Tarucha, S.:
    “Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene”
    Nature Physics 11, 1032-1036 (2015).
  6. *Takada, S., Bäuerle, C., Yamamoto, M., Watanabe, K., Hermelin, S., Meunier, T., Alex, A., Weichselbaum, A., von Delft, J., Wieck, A. D., and Tarucha, S.:
    “Transmission phase in the Kondo regime revealed in a two-path interferometer”
    Phys. Rev. Lett. 113, 126601 (2014).
  7. *Yamamoto, M., Takada, S., Bäuerle, C., Watanabe, K., Wieck, A. D., and Tarucha, S.:
    “Electrical control of a solid-state flying qubit”
    Nature Nanotechnology 7, 247-251 (2012).
  8. *Hermelin, S., Takada, S., Yamamoto, M., Tarucha, S., Wieck, A. D., Saminadayar, L., Bäuerle, C., and Meunier, T.:
    “Electron surfing on a sound wave as a platform for quantum optics with flying electrons”
    Nature 477, 435-438 (2011).
  9. *Craciun, M. F., Russo, S., Yamamoto, M., Oostinga, J. B., Morpurgo, A. F., and Tarucha, S.:
    “Trilayer graphene is a semimetal with a gate-tunable band overlap”
    Nature Nanotechnology 4, 383 - 388 (2009).
  10. *Yamamoto, M., Stopa, M., Hirayama, Y., Tokura, Y., and Tarucha, S.:
    “Negative Coulomb Drag in a One-Dimensional Wire”
    Science 313, 204-207 (2006).

Contact information

2-1 Hirosawa,
Wako, Saitama
351-0198, Japan

Email: michihisa.yamamoto [at] riken.jp