RIKEN Center for Advanced Intelligence Project Pathology Informatics Team
Team Director: Yoichiro Yamamoto (M.D., Ph.D.)
Research Summary

The mission of Pathology Informatics Team is to discover novel disease mechanisms, to find new therapies or to choose the best treatment for each patient through the combination of the state-of-the-art AI technologies and the medical big data including cell-level information.
Cell-level information in pathology provides the link between the molecular biology and the clinical medicine. Comprehensive analysis of the medical information through collaborations with clinical doctors would contribute to cure current and future patients.
Research Subjects:
- The discovery of novel disease mechanisms and therapies using Artificial Intelligence
- Precise companion diagnostics system
- Comprehensive analysis of medical data
Main Research Fields
- Multidisciplinary
Related Research Fields
- Molecular Biology & Genetics
- Clinical Medicine
- Computer Science
- Mathematics
Research Subjects
Selected Publications
Papers with an asterisk(*) are based on research conducted outside of RIKEN.
- 1.
Noguchi A, Numata Y, Sugawara T, Miura H, Konno K, Adachi Y, Yamaguchi R, Ishida M, Kokumai T, Daisuke D, Miura T, Maeda S, Otsuka H, Mizuma M, Nakagawa K, Morikawa H, Akatsuka J, Maeda I, Unno, M Yamamoto Y, Toru Furukawa T.:
"Deep learning predicts 1-year prognosis of pancreatic cancer patients using positive peritoneal washing cytology."
Sci Rep. 14, 17059 (2024). - 2.
Yamaguchi R, Morikawa H, Akatsuka J, Numata Y, Noguchi A, Kokumai T, Ishida M, Mizuma M, Morikawa T, Unno M, Miyake A, Tamiya G, Yamamoto Y, Toru Furukawa T.:
"Machine learning of histopathological images predicts recurrences of resected pancreatic ductal adenocarcinoma with adjuvant treatment."
Pancreas. 53(2), e199-e204 (2023). - 3.
Takahashi T, Matsuoka H, Sakurai R, Akatsuka J, Kobayashi Y, Nakamura M, Iwata T, Banno K, Matsuzaki M, Takayama J, Aoki D, Yamamoto Y, Tamiya G.:
"Development of a prognostic prediction support system for cervical intraepithelial neoplasia using artificial intelligence-based diagnosis."
J Gynecol Oncol. 33(5), e57 (2022). - 4.
Akatsuka J, Numata Y, Morikawa H, Sekine T, Kayama S, Mikami H, Yanagi M, Endo Y, Takeda H, Toyama Y, Fukumoto M, Kimura G, Kondo Y, Yamamoto Y.:
"A data-driven ultrasound approach for pathological high-grade prostate cancer."
Sci Rep. 12(1), 860-860 (2022). - 5.
Egevad L, Delahunt B, Samaratunga H, Tsuzuki T, Yamamoto Y, Yaxley J, Ruusuvuori P, Kartasalo K, Eklund M.:
"The emerging role of artificial intelligence in the reporting of prostate pathology."
Pathology 53(5):565-567, (2021). - 6.
Yamamoto Y, Tsuzuki T, Akatsuka J, Ueki M, Morikawa H, Numata Y, Takahara T, Tsuyuki T, Tsutsumi K, Nakazawa R, Shimizu A, Maeda I, Tsuchiya S, Kanno H, Kondo Y, Fukumoto M, Tamiya G, Ueda N, Kimura G.:
"Automated acquisition of explainable knowledge from unannotated histopathology images."
Nat Commun. 10, 5642 (2019). - 7.
Akatsuka J, Yamamoto Y, Sekine T, Numata Y, Morikawa H, Tsutsumi K, Yanagi M, Endo Y, Takeda H, Hayashi T, Ueki M, Tamiya G, Maeda I, Fukumoto M, Shimizu A, Tsuzuki T, Kimura G, Kondo Y.:
"Illuminating Clues of Cancer Buried in Prostate MR Image: Deep Learning and Expert Approaches."
Biomolecules. 9, 673 (2019). - 8.
Yamamoto Y, Saito A, Tateishi A, Shimojo H, Kanno H, Tsuchiya S, Ito KI, Cosatto E, Graf HP, Moraleda RR, Eils R, and Grabe N.:
"Quantitative diagnosis of breast tumors by morphometric classification of microenvironmental myoepithelial cells using a machine learning approach."
Sci Rep. 7, 46732 (2017). - 9.
*Yamamoto Y, Offord CP, Kimura G, Kuribayashi S, Takeda H, Tsuchiya S, Shimojo H, Kanno H, Bozic I, Nowak MA, Bajzer ž, and Dingli D.:
"Tumor and immune cell dynamics explain the PSA bounce after prostate cancer brachytherapy."
Br J Cancer. 115, 195-202 (2016). - 10.
*Saito A, Numata Y, Hamada T, Horisawa T, Cosatto E, Graf HP, Kuroda M, and Yamamoto Y.:
"A novel method for morphological pleomorphism and heterogeneity quantitative measurement: Named cell feature level co-occurrence matrix."
J Pathol Inform. 7, 36 (2016).
Recent Research Results
Mar. 19, 2020
New clues in AI cancer prognoses
Related Links
Further Information
- September 19, 2016: The Nikkei "Cancer Cells, Image Recognition using AI"
- Research Introduction: Scientific Support Programs for Cancer Research Grant-in-Aid for Scientific Research on Innovative Areas Ministry of Education, Culture, Sports, Science and Technology (In Japanese)
Lab Members
Principal investigator
- Yoichiro Yamamoto
- Team Director
Contact Information
Nihonbashi 1-chome Mitsui Building, 15th floor,
1-4-1 Nihonbashi,
Chuo-ku, Tokyo
103-0027, Japan
Email: yoichiro.yamamoto@riken.jp