RIKEN Center for Quantum Computing Superconducting Quantum Electronics Joint Research Unit
Unit Leader: Eisuke Abe (D.Sc.)
Research Summary

We develop quantum technologies based on superconducting devices, with particular emphasis on the development of multi-qubit quantum computers. We aim to implement superconducting qubits (quantum bits) and functionalities for coherent control and non-demolition measurement of quantum states via microwaves on a superconducting quantum circuit consisting of Josephson junctions, microwave transmission lines, microwave cavities, Josephson parametric amplifiers, and so on, and to bring a quantum computer which executes computations intractable with classical computers closer to reality.
Main Research Fields
- Mathematical & Physical Sciences
Related Research Fields
- Interdisciplinary Science & Engineering
- Engineering
- Physics
- Applied physics
- Electrical and electronic engineering
Keywords
- Superconducting circuit
- Quantum computing
- Quantum technology
- Microwave engineering
- Quantum entanglement
Selected Publications
Papers with an asterisk(*) are based on research conducted outside of RIKEN.
- 1.
K. Sasaki and E. Abe.:
"Suppression of Pulsed Dynamic Nuclear Polarization by Many-Body Spin Dynamics"
Physical Review Letters 132, 106904 (2024) - 2.
E. Abe.:
"Superconducting route to quantum computing"
Proceeding of 2023 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), P.1–4 (2023) - 3.
K. Sasaki, H. Watanabe, H. Sumiya, K. M. Itoh, and E. Abe.:
"Detection and control of single proton spins in a thin layer of diamond grown by chemical vapor deposition"
Applied Physics Letters 117, 114002 (2020) - 4.
R. Sakano, A. Oguri, Y. Nishikawa, and E. Abe.:
"Bell-state correlations of quasiparticle pairs in the nonlinear current of a local Fermi liquid"
Physical Review B 99, 155106 (2019) - 5.
*K. Sasaki, K. M. Itoh, and E. Abe.:
"Determination of the position of a single nuclear spin from free nuclear precessions detected by a solid-state quantum sensor"
Physical Review B 98, 121405 (2018) - 6.
*E. Abe and K. Sasaki.:
"Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry"
Journal of Applied Physics 123, 161101 (2018) - 7.
*K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe.:
"Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond"
Review of Scientific Instruments 87, 053904 (2016) - 8.
*L. Yu, C. M. Natarajan, T. Horikiri, C. Langrock, J. S. Pelc, M. G. Tanner, E. Abe, S. Maier, C. Schneider, S. Höfling, M. Kamp, R. H. Hadfield, M. M. Fejer, and Y. Yamamoto.:
"Two-photon interference at telecom wavelengths for time-bin-encoded single photons from quantum-dot spin qubits"
Nature Communications 6, 8955 (2015) - 9.
*K. De Greve, P. L. McMahon, L. Yu, J. Pelc, C. Jones, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto.:
"Complete tomography of a high-fidelity solid-state entangled spin–photon qubit pair"
Nature Communications 4, 2228 (2013) - 10.
*K. De Greve, L. Yu, P. L. McMahon, J. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, S. Höfling, R. H. Hadfield, A. Forchel, M. M. Fejer, and Y. Yamamoto.:
"Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength"
Nature 491, 421 (2012)
Lab Members
Principal investigator
- Eisuke Abe
- Unit Leader
Contact Information
Bioscience Building(S01)
2-1 Hirosawa,
Wako-shi, Saitama
351-0198
Tel: +81-(0)48-462-1111(Ext.5718)
Fax: +81-(0)48-462-6847
Email: eisuke.abe@riken.jp