1. Home
  2. Research
  3. Centers & Labs
  4. RIKEN Center for Brain Science

RIKEN Center for Brain Science Laboratory for Glia-Neuron Circuit Dynamics

Team Leader: Jun Nagai (Ph.D.)

Research Summary

Jun Nagai (Ph.D.)

The lab’s mission is to discover fundamental mechanisms how the brain functions and malfunctions at molecular, cellular, circuit and behavioral levels by including “the other half” of the CNS; glial cells. Studies about astrocytes, a type of glia that tile the entire brain and structurally and functionally interact with neurons, synapses and other glia, have lagged behind partially due to the lack of tools. By developing and utilizing opto-/pharmaco-genetic, imaging, molecular biology and electrophysiology tools, the team aims to unveil astrocyte contributions to adaptive and maladaptive animal behaviors for delivering insights on future therapeutics.

Main Research Fields

  • Biological Sciences

Related Research Fields

  • Complex Systems
  • Biology
  • Neurophysiology/General neuroscience, Neurochemistry/Neuropharmacology
  • Animal physiology/Animal behavior
  • Molecular biology


  • Adaptive behavior
  • Cognition and emotion
  • Glia
  • Cellular physiology
  • Genetics

Selected Publications

Papers with an asterisk(*) are based on research conducted outside of RIKEN.

  • 1. *(*co-first authors) *Yu, X., *Nagai, J., Khakh, B.S.:
    "Improved tools to study astrocytes."
    Nature Reviews Neuroscience 21,121-138. (2020).
  • 2. *Nagai, J., Rajbhandari, A.K., Gangwani, M.R., Hachisuka, A., Coppola, G., Masmanidis, S.C., Fanselow, M.S., Khakh, B.S.:
    "Hyperactivity with disrupted attention induced by activation of an astrocyte synaptogenic cue."
    Cell 177(5), 1280-92. (2019).
  • 3. *Lobas, M., Tao, R., Nagai, J., Kronschlager, M.T., Borden, P., Marvin, J.S., Looger, L.L., Khakh, B.S.:
    "A genetically encoded single-wavelength sensor for imaging cytosolic and cell surface ATP."
    Nature Communications, 10, 711. (2019)
  • 4. *Yu, X., Taylor, A.M.W., Nagai, J., Golshani, P., Evans, C.J., Khakh, B.S.:
    "Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior."
    Neuron, 99(6), 1170-87. (2018).
  • 5. *Nagai, J., Baba, R., Ohshima, T.:
    "CRMPs function in neurons and glial cells: a potential therapeutic target for neurodegenerative disease and CNS injury."
    Molecular Neurobiology, 54(6), 4243-42. (2017)
  • 6. *Nagai, J., Takaya, R., Piao, W., Goshima, Y., Ohshima, T.:
    "Deletion of Crmp4 attenuates CSPG-induced inhibition of axonal growth and induces nociceptive recovery after spinal cord injury."
    Molecular Cellular Neuroscience, 17, 74:42-48. (2016)
  • 7. *Nagai, J., Owada, K., Kitamura, Y., Goshima, Y., Ohshima, T.:
    "Inhibition of CRMP2 phosphorylation repairs CNS by regulating neurotrophic and inhibitory responses."
    Experimental Neurology, 277, 283-95. (2016)
  • 8. *Nagai, J., Kitamura, Y., Owada, K., Yamashita, N., Takei, K., Goshima, Y., Ohshima, T.:
    "Crmp4 deletion promotes recovery from spinal cord injury by neuroprotection and limited scar formation."
    Scientific Reports, 5, 8269. (2015)
  • 9. *Nagai, J., Goshima, Y., Ohshima, T.:
    "CRMP4 mediates MAG-induced inhibition of axonal outgrowth and protection against Vincristine-induced axonal degeneration."
    Neuroscience Letters, 519, 56-61. (2012)

Lab Members

Principal investigator

Jun Nagai
Team Leader


Position Deadline
Seeking a Research Scientist (W20035) Open until filled

Contact Information

Central building, 6F, S602
2-1 Hirosawa
Wako, Saitama
351-0198, Japan
Email: jun.nagai [at] riken.jp