RIKEN Center for Emergent Matter Science Dynamic Emergent Phenomena Research Team
Team Leader: Fumitaka Kagawa (Ph.D.)
Research Summary
Our research team explores dynamic phenomena exhibited by strongly correlated electron systems in both bulk specimen and device structures to construct a new principle in condensed matter science. In particular, we study external-field-driven dynamic phenomena exhibited by sub-micron-scale structures, such as topological spin textures and domain walls, using spectroscopy of dielectric responses and resistance fluctuations from the millihertz to gigahertz region. We also pursue real-space observations and measurements of local physical properties using scanning probe microscopy as a complementary approach. We are aiming to control novel physical properties exhibited by topological structures in condensed matter systems on the basis of knowledge obtained from these methods.
Main Research Fields
- Mathematical & Physical Sciences
Related Research Fields
- Interdisciplinary Science & Engineering
- Engineering
Keywords
- Metal-insulator transition
- Phase-change memory
- Scanning probe microscopy
- Magnetic skyrmion
Selected Publications
- 1.
Wang, M., Tanaka, K., Sakai, S., Wang, Z., Deng, K., Lyu, Y., Li, C., Tian, D., Sheng, S., Ogawa, N., Kanazawa, N., Yu, P., Arita, R., and Kagawa, F.:
"Emergent zero-field anomalous Hall effect in a reconstructed rutile antiferromagnetic metal"
Nat Commun 14, 8240 (2023). - 2.
Furuta, S., Moody, H., Kado, K., Koshibae, W., and Kagawa, F.:
"Energetic perspective on emergent inductance exhibited by magnetic textures in the pinned regime"
npj Spintronics 1, 1 (2023). - 3.
Matsuura, Y., Nishizawa, Y., Kinoshita, Y., Kurumaji, T., Miyaka, A., Oike, M., Tokunaga, M., Tokura, Y., and Kagawa, F.:
"Low-temperature hysteresis broadening emerging from domain-wall creep dynamics in a two-phase competing system"
Commun. Mat. 4, 71 (2023). - 4.
Sato, T., Koshibae, W., Kikkawa, A., Taguchi, Y., Nagaosa, N., Tokura, Y., and Kagawa, F.:
"Nonthermal current-induced transition from skyrmion lattice to nontopological magnetic phase in spatially confined MnSi"
Phys. Rev. B 106, 144425 (2022). - 5.
Oike, H., Ebino, T., Koretsune, T., Kikkawa, A., Hirshberger, M., Taguchi, Y., Tokura, Y., and Kagawa, F.:
"Topological Nernst effect emerging from real-space gauge field and thermal fluctuations in a magnetic skyrmion lattice"
Phys. Rev. B 106, 214425 (2022). - 6.
Sato, T., Koshibae, W., Kikkawa, A., Yokouchi, T., Oike, H., Taguchi, Y., Nagaosa, N., Tokura, Y., and Kagawa, F.:
"Slow steady flow of a skyrmion lattice in a confined geometry probed by resistance narrow-band noise"
Phys. Rev. B 100, 094410 (2019). - 7.
Oike, H., Kamitani, M., Tokura, Y., and Kagawa, F.:
"Kinetic approach to superconductivity hidden behind a competing order"
Sci. Adv. 4, eaau3489 (2018). - 8.
Kagawa, F., and Oike, H.:
"Quenching of Charge and Spin Degrees of Freedom in Condensed Matter"
Adv. Mat. 29, 1601979 (2017). - 9.
Kagawa, F., Minami, N., Horiuchi, S., and Tokura, Y.:
"Athermal domain-wall creep near a ferroelectric quantum critical point"
Nat. Commun. 7, 10675 (2016). - 10.
Oike, H., Kikkawa, A., Kanazawa, N., Taguchi, Y., Kawasaki, M., Tokura, Y., and Kagawa, F.:
"Interplay between topological and thermodynamic stability in a metastable magnetic skyrmion lattice"
Nat. Phys. 12, 62 (2016).
Recent Research Results
-
Mar. 26, 2024
Electron-bending effect could boost computer memory -
Feb. 27, 2023
An electrical change of phase using skyrmions -
Dec. 28, 2018
Rapid cooling reveals superpowers -
Oct. 21, 2016
‘Snap freezing’ produces different state
Related Links
Lab Members
Principal investigator
- Fumitaka Kagawa
- Team Leader
Core members
- Tetsuya Nomoto
- Postdoctoral Researcher
- Samiran Banu
- Postdoctoral Researcher
- Keisuke Matsuura
- Visiting Scientist
- Hiroshi Oike
- Visiting Scientist
- Takuro Sato
- Visiting Scientist
Contact Information
209 Frontier Research Laboratory
2-1 Hirosawa,
Wako, Saitama
351-0198, Japan
Email: fumitaka.kagawa [at] riken.jp