RIKEN Center for Emergent Matter Science First-Principles Materials Science Research Team
Team Leader: Ryotaro Arita (Ph.D.)
Research Summary
By means of first-principles calculation, we study non-trivial electronic properties of correlated/topological materials. We also aim at predicting intriguing phenomena originating from many-body correlations and designing novel functional materials/systems. The long-term goal of our research is to establish new guiding principles for materials design. We are also interested in the development of new methods for electronic structure calculation.
Main Research Fields
- Mathematical & Physical Sciences
Related Research Fields
- Interdisciplinary Science & Engineering
Keywords
- First-principles calculation
- Superconductivity
- Magnetism
- Strongly correlated electron systems
Selected Publications
- 1.
H. Watanabe, K. Shinohara, T. Nomoto, A. Togo, and R. Arita.:
"Symmetry analysis with spin crystallographic groups: Disentangling effects free of spin-orbit coupling in emergent electromagnetism"
Phys. Rev. B 109 094438 (2024) - 2.
T. Nomoto, S. Minami, Y. Yanagi, M.-T. Suzuki, T. Koretsune, and R. Arita.:
"High-throughput calculations of antiferromagnets hosting anomalous transport phenomena"
Phys. Rev. B 109 094435 (2024) - 3.
H.-Y. Chen, T. Nomoto, and R. Arita.:
"Development of an ab initio method for exciton condensation and its application to TiSe2"
Phys. Rev. Research 5 0413183 (2023) - 4.
S. Backes, Y. Murakami, S. Sakai and R. Arita.:
"Dynamical mean-field theory for the Hubbard-Holstein model on a quantum device"
Phys. Rev. B 107 165155 (2023) - 5.
T. Nomoto and R. Arita.:
"Ab initio exploration of short-pitch skyrmion materials: Role of orbital frustration"
J. Appl. Phys. 133, 150901 (2023) - 6.
M. Kitatani, L. Si, P. Worm, J.M. Tomczak, R. Arita, and K. Held.:
"Optimizing Superconductivity: From Cuprates via Nickelates to Palladates"
Phys. Rev. Lett. 130 166002 (2023) - 7.
R. Masuki, T. Nomoto, R. Arita, and T. Tadano.:
"Ab initio structural optimization at finite temperatures based on anharmonic phonon theory: Application to the structural phase transitions of BaTiO3"
Phys. Rev. B 106 224104 (2022) - 8.
T. Yu, R. Arita, and M. Hirayama.:
"Interstitial-Electron-Induced Topological Molecular Crystals"
Advanced Physics Research, 2200041 (2022) - 9.
M.-C. Jiang, G.-Y. Guo, M. Hirayama, T. Yu, T. Nomoto, and R. Arita.:
"Efficient hydrogen evolution reaction due to topological polarization"
Phys. Rev. B 106, 165120 (2022) - 10.
S. Sakai, R. Arita and T. Ohtsuki.:
"Quantum phase transition between hyperuniform density distributions"
Phys. Rev. Res. 4 033241 (2022)
Recent Research Results
-
Nov. 19, 2021
Modeling quantum spin liquids using machine learning -
Apr. 21, 2017
A more fundamental approach to correlation -
Aug. 28, 2015
Electrons that stick together, superconduct together
Related Links
Lab Members
Principal investigator
- Ryotaro Arita
- Team Leader
Core members
- Shiro Sakai
- Senior Scientist
- Yuta Murakami
- Research Scientist
- Rikuto Oiwa
- Special Postdoctoral Researcher
- Jean-Baptiste Moree
- Special Postdoctoral Researcher
- Kotaro Shimizu
- Special Postdoctoral Researcher
- Kosuke Nogaki
- Special Postdoctoral Researcher
- Ming-Chun Jiang
- International Program Associate
Contact Information
Main Research Building 131,
2-1 Hirosawa,
Wako, Saitama,
351-0198 Japan
Email: arita [at] riken.jp