RIKEN Center for Computational Science Data Assimilation Research Team
Team Leader: Takemasa Miyoshi (Ph.D.)
Research Summary
Data assimilation (DA) is a cross-disciplinary science to synergize computer simulations and real-world data, using statistical methods and applied mathematics. As computers become more powerful and enable more precise simulations, it will become more important to compare the simulations with actual observations. DA Team performs cutting-edge research and development on advanced DA methods and their wide applications, aiming to integrate computer simulations and real-world data in the wisest way. Particularly, DA Team tackles challenging problems of developing efficient and accurate DA systems for “big simulations” with real-world “big data” from various sources including advanced sensors. The specific foci include 1) theoretical and algorithmic developments for efficient and accurate DA, 2) DA methods and applications by taking advantage of the world-leading supercomputer and “big data” from new advanced sensors, and 3) exploratory new applications of DA in wider simulation fields. These advanced DA studies will enhance simulation capabilities and lead to a better use of high-performance computers.
Main Research Fields
- Mathematical & Physical Sciences
Related Research Fields
- Informatics
Keywords
- Data Assimilation
- Numerical Weather Prediction
- Large Scale Simulation
- Ensemble Data Assimilation
- Natural disaster prediction
Research Subjects
- Ensemble-based data assimilation suitable to various high-dimensional simulations
- Theoretical research on challenging problems in data assimilation
- Wide applications of data assimilation
- Cutting-edge data assimilation research on geophysical applications
- Data assimilation using Big Data
Selected Publications
- 1.
Sun, Q., T. Miyoshi, S. Richard.:
2023: "Analysis of COVID-19 in Japan with extended SEIR model and ensemble Kalman filter."
Journal of Computational and Applied Mathematics.
doi.org/10.1016/j.cam.2022.114772 - 2.
Miyoshi, T. and Sun, Q.:
2022: "Control Simulation Experiment with the Lorenz's Butterfly Attractor, Nonlin."
Processes Geophys., 29, 133-139, 2022.
doi.org/10.5194/npg-29-133-2022 - 3.
Honda, T., A. Amemiya, S. Otsuka, G.-Y. Lien, J. Taylor, Y. Maejima, S. Nishizawa, T. Yamaura, K. Sueki, H. Tomita, S. Satoh, Y. Ishikawa, and T. Miyoshi.:
2022: "Development of the Real-Time 30-s-Update Big Data Assimilation System for Convective Rainfall Prediction with a Phased Array Weather Radar: Description and Preliminary Evaluation"
J. Adv. Modeling Earth Systems, 14(6), e2021MS002823.
doi:10.1029/2021MS002823 - 4.
Otsuka, S., S. Kotsuki, M. Ohhigashi, and T. Miyoshi.:
2019: "GSMaP RIKEN Nowcast: Global precipitation nowcasting with data assimilation. J. Meteor."
Soc. Japan, 97, 1099-1117.
doi:10.2151/jmsj.2019-061 - 5.
Honda, T., S. Kotsuki, G.-Y. Lien, Y. Maejima, K. Okamoto and T. Miyoshi.:
2018: "Assimilation of Himawari-8 All-Sky Radiances Every 10 Minutes: Impact on Precipitation and Flood Risk Prediction."
J. Geophys. Res., 123, 965-976.
doi:10.1002/2017JD027096 - 6.
Arakida, H., T. Miyoshi, T. Ise, S. Shima and S. Kotsuki.:
2017: "Non-Gaussian data assimilation of satellite-based Leaf Area Index observations with an individual-based dynamic global vegetation model."
Nonlinear Processes in Geophys., 24, 553-567.
doi:10.5194/npg-24-553-2017 - 7.
Miyoshi, T., G.-Y. Lien, S. Satoh, T. Ushio, K. Bessho, H. Tomita, S. Nishizawa, R. Yoshida, S. A. Adachi, J. Liao, B. Gerofi, Y. Ishikawa, M. Kunii, J. Ruiz, Y. Maejima, S. Otsuka, M. Otsuka, K. Okamoto, and H. Seko.:
2016: "Big Data Assimilation" toward Post-peta-scale Severe Weather Prediction: An Overview and Progress."
Proc. of the IEEE, 104, 2155-2179.
doi:10.1109/JPROC.2016.2602560 - 8.
Miyoshi, T., M. Kunii, J. Ruiz, G.-Y. Lien, S. Satoh, T. Ushio, K. Bessho, H. Seko, H. Tomita, and Y. Ishikawa.:
2016: "Big Data Assimilation" Revolutionizing Severe Weather Prediction. Bull. Amer. Meteor."
Soc., 97, 1347-1354.
doi:10.1175/BAMS-D-15-00144.1 - 9.
Miyoshi, T., K. Kondo, and K. Terasaki.:
2015: "Big Ensemble Data Assimilation in Numerical Weather Prediction."
Computer, 48, 15-21.
doi:10.1109/MC.2015.332 - 10.
Miyoshi, T., K. Kondo, and T. Imamura.:
2014: "The 10240-member ensemble Kalman filtering with an intermediate AGCM. Geophys."
Res. Lett., 41, 5264-5271.
doi:10.1002/2014GL060863
Recent Research Results
-
Dec. 26, 2023
Turning the tables on weather forecasting -
Jun. 22, 2023
Scientists show way to mitigate extreme weather events -
Mar. 28, 2022
Chaos theory provides hints for controlling the weather
Related Links
Lab Members
Principal investigator
- Takemasa Miyoshi
- Team Leader
Core members
- Shigenori Otsuka
- Research Scientist
- James Taylor
- Research Scientist
- Michael Robert Goodliff
- Research Scientist
- Shun Ohishi
- Research Scientist
- Arata Amemiya
- Research Scientist
- Tristan Hascoet
- Research Scientist
- Jianyu Liang
- Postdoctoral Researcher
- Rakesh Teja Konduru
- Postdoctoral Researcher
- Kota Takeda
- Junior Research Associate
- Hideyuki Sakamoto
- Technical Staff I
- Takahisa Ishimizu
- Technical Staff I
- Shu-Chih Yang
- Senior Visiting Scientist
- John Craig Wells
- Senior Visiting Scientist
- Juan Ruiz
- Visiting Scientist
- Koji Terasaki
- Visiting Scientist
- Shunji Kotsuki
- Visiting Scientist
Contact Information
7-1-26,Minatojima-minami-machi,
Chuo-ku,Kobe,Hyogo
650-0047,Japan
Email: da-team-desk [at] ml.riken.jp