1. Home
  2. Research
  3. Centers & Labs
  4. RIKEN Center for Computational Science

RIKEN Center for Computational Science Data Assimilation Research Team

Team Principal: Takemasa Miyoshi (Ph.D.)

Research Summary

Takemasa  Miyoshi(Ph.D.)

Data assimilation (DA) is a cross-disciplinary science to synergize computer simulations and real-world data, using statistical methods and applied mathematics. As computers become more powerful and enable more precise simulations, it will become more important to compare the simulations with actual observations. DA Team performs cutting-edge research and development on advanced DA methods and their wide applications, aiming to integrate computer simulations and real-world data in the wisest way. Particularly, DA Team tackles challenging problems of developing efficient and accurate DA systems for “big simulations” with real-world “big data” from various sources including advanced sensors. The specific foci include 1) theoretical and algorithmic developments for efficient and accurate DA, 2) DA methods and applications by taking advantage of the world-leading supercomputer and “big data” from new advanced sensors, and 3) exploratory new applications of DA in wider simulation fields. These advanced DA studies will enhance simulation capabilities and lead to a better use of high-performance computers.

Main Research Fields

  • Mathematical & Physical Sciences

Related Research Fields

  • Informatics

Keywords

  • Data Assimilation
  • Numerical Weather Prediction
  • Large Scale Simulation
  • Ensemble Data Assimilation
  • Natural disaster prediction

Research Subjects

  • Ensemble-based data assimilation suitable to various high-dimensional simulations
  • Theoretical research on challenging problems in data assimilation
  • Wide applications of data assimilation
  • Cutting-edge data assimilation research on geophysical applications
  • Data assimilation using Big Data

Selected Publications

  • 1. Liang, J., N. Sugimoto, and T. Miyoshi,
    "2025: Unveiling Energy Conversions of the Venus Atmosphere by the Bred Vectors. Geophysical Research Letters, 52, e2024GL112663."
    doi:10.1029/2024GL1126631
  • 2. Ohishi, S., T. Miyoshi, T. Ando, T. Higashiuwatoko, E. Yoshizawa, H. Murakami, and M. Kachi,
    "2024: LETKF-based Ocean Research Analysis (LORA) version 1.0, Geoscience Data Journal, 11, 995-1006."
    doi:10.1002/gdj3.2711
  • 3. Li, L., J. Li, and T. Miyoshi,
    "2024: Chaos suppression through Chaos enhancement, Nonlinear Dyn.",
    doi:10.1007/s11071-024-10426-z1
  • 4. Sun, Q., T. Miyoshi, S. Richard,
    "2023: Analysis of COVID-19 in Japan with extended SEIR model and ensemble Kalman filter., Journal of Computational and Applied Mathematics."
    doi.org/10.1016/j.cam.2022.1147721
  • 5. Miyoshi, T., A. Amemiya, S. Otsuka, Y. Maejima, J. Taylor, T. Honda, H. Tomita, S. Nishizawa, K. Sueki, T. Yamaura, Y. Ishikawa, S. Satoh, T. Ushio, K. Koike, and A. Uno,
    "2023: Big Data Assimilation: Real-time 30-second-refresh Heavy Rain Forecast Using Fugaku During Tokyo Olympics and Paralympics. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC '23). Association for Computing Machinery, 8, 1-10."
    doi:10.1145/3581784.36270471
  • 6. Miyoshi, T. and Sun, Q.,
    "2022: Control Simulation Experiment with the Lorenz's Butterfly Attractor, Nonlin. Processes Geophys., 29, 133-139, 2022."
    doi.org/10.5194/npg-29-133-20221
  • 7. Honda, T., S. Kotsuki, G.-Y. Lien, Y. Maejima, K. Okamoto and T. Miyoshi,
    "2018: Assimilation of Himawari-8 All-Sky Radiances Every 10 Minutes: Impact on Precipitation and Flood Risk Prediction. J. Geophys. Res., 123, 965-976."
    doi:10.1002/2017JD0270961
  • 8. Miyoshi, T., G.-Y. Lien, S. Satoh, T. Ushio, K. Bessho, H. Tomita, S. Nishizawa, R. Yoshida, S. A. Adachi, J. Liao, B. Gerofi, Y. Ishikawa, M. Kunii, J. Ruiz, Y. Maejima, S. Otsuka, M. Otsuka, K. Okamoto, and H. Seko,
    "2016: "Big Data Assimilation" toward Post-peta-scale Severe Weather Prediction: An Overview and Progress. Proc. of the IEEE, 104, 2155-2179."
    doi:10.1109/JPROC.2016.26025601
  • 9. Miyoshi, T., M. Kunii, J. Ruiz, G.-Y. Lien, S. Satoh, T. Ushio, K. Bessho, H. Seko, H. Tomita, and Y. Ishikawa,
    "2016: "Big Data Assimilation" Revolutionizing Severe Weather Prediction. Bull. Amer. Meteor." Soc., 97, 1347-1354."
    doi:10.1175/BAMS-D-15-00144.1
  • 10. Miyoshi, T., K. Kondo, and T. Imamura,
    "2014: The 10240-member ensemble Kalman filtering with an intermediate AGCM. Geophys. Res. Lett., 41, 5264-5271."
    doi:10.1002/2014GL060863

Recent Research Results

Related Links

Lab Members

Principal investigator

Takemasa Miyoshi
Team Principal

Core members

Shigenori Otsuka
Senior Research Scientist
James Taylor
Research Scientist
Michael Robert Goodliff
Research Scientist
Shun Ohishi
Research Scientist
Tristan Hascoet
Research Scientist
Arata Amemiya
Research Scientist
Jianyu Liang
Postdoctoral Researcher
Yuta Tarumi
Postdoctoral Researcher
Tatsuro Iwanaka
Research Associate
Shungo Tonoyama
Research Associate
Takahisa Ishimizu
Technical Staff I
Shu-Chih Yang
Senior Visiting Scientist
John Craig Wells
Senior Visiting Scientist
Juan Ruiz
Visiting Scientist
Koji Terasaki
Visiting Scientist
Shunji Kotsuki
Visiting Scientist

Contact Information

7-1-26,Minatojima-minami-machi,
Chuo-ku,Kobe,Hyogo
650-0047,Japan
Email: da-team-desk@ml.riken.jp

Top