RIKEN Center for Emergent Matter Science Emergent Phenomena Measurement Research Team
Team Leader: Tetsuo Hanaguri (D.Eng.)
Research Summary
We experimentally study electronic states behind emergent phenomena in electron systems, such as high-temperature superconductivity and topological quantum phenomena. For this purpose, we use scanning tunneling microscopes working under combined extreme conditions of very low temperature, high magnetic field and ultra-high vacuum. Modern scanning-tunneling-microscopy technology enables us to obtain a “map of the electronic state” with atomic-scale spatial resolution and energy resolution as high as micro electron volt. We will make and analyze the maps of various materials and try to establish the relationships between material properties and electronic states. We also aim to improve and functionalize the scanning tunneling microscope and pursue the development of novel measurement techniques to discover new emergent phenomena in condensed matter.
Main Research Fields
- Mathematical & Physical Sciences
Related Research Fields
- Interdisciplinary Science & Engineering
Keywords
- Superconductivity
- Topological quantum phenomena
- Scanning probe microscopy
Selected Publications
- 1.
Butler, C.J., Yoshida, M., Hanaguri, T., and Iwasa, Y.:
"Mottness versus unit-cell doubling as the driver of the insulating state in 1T-TaS2"
Nature Commun. 11, 2477 (2020). - 2.
Machida, T., Sun, Y., Pyon, S., Takeda, S., Kohsaka, Y., Hanaguri, T., Sasagawa, T., and Tamegai, T.:
"Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te)"
Nature Mater. 18, 811 (2019). - 3.
Hanaguri, T., Kasahara, S., Böker, J., Eremin, I., Shibauchi, T., and Matsuda, Y.:
"Quantum Vortex Core and Missing Pseudogap in the Multiband BCS-BEC Crossover Superconductor FeSe"
Phys. Rev. Lett. 122, 077001 (2019). - 4.
Machida, T., Kohsaka, Y., and Hanaguri, T.:
"A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T"
Rev. Sci. Instrum. 89, 093707 (2018). - 5.
Hanaguri, T., Iwaya, K, Kohsaka, Y., Machida, T., Watashige, T., Kasahara, S., Shibauchi, T., and Matsuda, Y.:
"Two distinct superconducting pairing states divided by the nematic end point in FeSe1-xSx"
Science Adv. 4, eaar6419 (2018). - 6.
Iwaya, K., Kohsaka, Y., Okawa, K., Machida, T., Bahramy, M. S., Hanaguri, T., and Sasagawa, T.:
"Full-gap superconductivity in spin-polarised surface states of topological semimetal β-PdBi2"
Nature Commun. 8, 976 (2017). - 7.
Machida, T., Kohsaka, Y., Iwaya, K., Arita, R., Hanaguri, T., Suzuki, R., Ochi, M., and Iwasa, Y.:
"Orbital-dependent quasiparticle scattering interference in 3R-NbS2"
Phys. Rev. B 96, 075206 (2017). - 8.
Kohsaka, Y., Machida, T., Iwaya, K., Kanou, M., Hanaguri, T., and Sasagawa, T.:
"Spin-orbit scattering visualized in quasiparticle interference"
Phys. Rev. B 95, 115307 (2017). - 9.
Machida, T., Kohsaka, Y., Matsuoka, K., Iwaya, K., Hanaguri, T., and Tamegai, T.:
"Bipartite electronic superstructures in the vortex core of Bi2Sr2CaCu2O8+δ"
Nature Commun. 7, 11747 (2016). - 10.
Fu, Y.-S., Hanaguri, T., Igarashi, K., Kawamura, M., Bahramy, M. S., and Sasagawa,T.:
"Observation of Zeeman effect in topological surface state with distinct material dependence"
Nature Commun. 7, 10829 (2016).
Recent Research Results
-
Aug. 5, 2016
Mystery solved in superconductor electron patterns -
Nov. 13, 2015
Mind the gap! -
Nov. 14, 2014
Electrons move in different circles
Related Links
Lab Members
Principal investigator
- Tetsuo Hanaguri
- Team Leader
Core members
- Tadashi Machida
- Senior Scientist
- Christopher John Butler
- Senior Scientist
- Masahiro Naritsuka
- Research Scientist
- Katsuki Nihongi
- Special Postdoctoral Researcher
Contact Information
S406, Chemistry and Materials Physics Building,
2-1 Hirosawa, Wako,
Saitama 351-0198, Japan
Email: hanaguri [at] riken.jp