脳神経科学研究センター 数理脳科学研究チーム
チームリーダー 豊泉 太郎(Ph.D.)
研究概要

当研究チームは、数理モデルの解析を通して、脳の情報処理機構および神経回路が環境に対して適応・学習するメカニズムの研究をしています。統計力学や情報理論などで培われた解析技術をコンピュータシミュレーションと組み合わせることにより、神経回路網が適切に機能する為に必要な基本的原理の理解を目指しています。
神経細胞がその活動に応じて自身の性質を変化させる現象(神経可塑性)は脳の学習、記憶、発達に大きな役割を果たしています。当研究チームは、数理的なモデルを駆使して、細胞レベルから回路レベルの知見を包括する可塑性の理論の構築を目指しています。更に、その結果形成される神経回路がどのような情報表現や情報保持の性能を持つかを回路の持つ構造や振る舞いから予測します。
研究主分野
- 情報学
研究関連分野
- 複合領域
- 工学
- 総合生物
キーワード
- 計算神経科学
- 情報統計力学
- 神経学習理論
主要論文
「*」は、理研外のみでの成果です。
- 1.
Ł. Kuśmierz, S. Ogawa, and T. Toyoizumi.:
"Edge of chaos and avalanches in neural networks with heavy-tailed synaptic weight distribution"
Physical Review Letters 125, 028101 (2020). - 2.
Legaspi R. and Toyoizumi T.:
"A Bayesian psychophysics model of sense of agency"
Nature Communications 10:4250 (2019) - 3.
Humble J., Hiratsuka K., Kasai H., and Toyoizumi T.:
"Intrinsic Spine Dynamics Are Critical for Recurrent Network Learning in Models With and Without Autism Spectrum Disorder"
Frontiers in Computational Neuroscience 13:38 (2019) - 4.
Isomura T and Toyoizumi T.:
"Error-Gated Hebbian Rule: A Local Learning Rule for Principal and Independent Component Analysis"
Scientific Reports , 8, 1835 (2018) - 5.
Buckley C L and Toyoizumi T.:
"A theory of how active behavior stabilizes neural activity: neural gain modulation by closed-loop environmental feedback"
PLOS Computational Biology , 14, e1005926 (2018) - 6.
Tajima S, Mita T, Bakkum D, Takahashi H, and Toyoizumi T.:
"Locally embedded presages of global network bursts"
Proc. Natl. Acad. Sci, 114, 9517-9522 (2017) - 7.
Toyoizumi T, Kaneko M, Stryker MP, and Miller KD.:
"Modeling the dynamic interaction of Hebbian and homeostatic plasticity"
Neuron, 84(2), 497-510 (2014) - 8.
Toyoizumi T and Abbott LF.:
"Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime"
Physical Review, E 84(5), 051908 (2011) - 9.
Toyoizumi T, Aihara K, and Amari S.:
"Fisher information for spike-based population decoding."
Phys Rev Lett, 97(9), 98102 (2006) - 10.
Toyoizumi T, Pfister JP, Aihara K, and Gerstner W.:
"Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission."
Proc Natl Acad Sci U S A, 102(14), 5239-44 (2005)
研究成果(プレスリリース)
2025年2月6日
大切な情報を抽出する神経回路モデル2024年9月27日
シナプスの結びつきの強さが睡眠の量と質を一定に保つ仕組みに関与する2024年4月25日
カオスを用いた脳型ベイズ計算モデル2023年1月12日
睡眠中の脳の学習理論2020年7月8日
二つの臨界現象をつなぐ2019年9月18日
最適な感覚統合で「主体感」を定量化
刊行物
関連リンク
メンバーリスト
主宰者
- 豊泉 太郎
- チームリーダー
採用情報
募集職種 | 応募締切 |
---|---|
研究員または特別研究員募集(W24015) | ポストが決まり次第 |
お問い合わせ先
〒351-0198 埼玉県和光市広沢2番1号
Email: toyoizumilab [at] ml.riken.jp
※[at]は@に置き換えてください。